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The eight-vertex model is equivalent to a "solid-on-solid" (SOS) model, in which 
an integer height 1 i is associated with each site i of the square lattice. The 
Boltzmann weights of the model are expressed in terms of elliptic functions of 
period 2K, and involve a variable parameter ~/. Here we begin by showing that 
the hard hexagon model is a special case of this eight-vertex SOS model, in 
which v/= K/5 and the heights are restricted to the range 1 < Ii < 4. We remark 
that the calculation of the sublattice densities of the hard hexagon model 
involves the Rogers-Ramanujan and related identities. We then go on to 
consider a more general eight-vertex SOS model, with 77 = K / r  (r an integer) 
and 1 < l~ < r -  1. We evaluate the local height probabilities (which are the 
analogs of the sublattice densities) of this model, and are automatically led to 
generalizations of the Rogers-Ramanujan and similar identities. The results are 
put into a form suitable for examining critical behavior, and exponents/3, a, 
are obtained. 

KEY WORDS: Statistical mechanics; lattice statistics; number theory; 
eight-vertex model; solid-on-solid model; hard hexagon model; Rogers- 
Ramanujan identities. 

1. THE LOCAL HEIGHT PROBABILITIES P,, 

1.1. Introduction 

Many of the exactly solved two-dimensional models in statistical mechanics 
are equivalent to special cases of the eight-vertex model. (1-3) For instance, 
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the critical Ports model is equivalent to a six-vertex model, (4) which is the 
eight-vertex model with two-vertex configurations given zero weight. (One 
point that should be made is that the six-vertex model can be solved in an 
electric field, (5) which is not true of the eight-vertex model. Here we shall 
consider only the "zero-field" eight-vertex model.) 

The triangular three-spin model was originally proposed and solved (6) 
quite independently of the eight-vertex model: three years went by before it 
was realized (v) that it can be transformed into a special eight-vertex model. 

It seems that history must repeat itself: it is now a little over three 
years since the hard hexagon model was solved, (8'9) and until now it was 
believed to be distinct from the eight-vertex model (p. 453 of Ref. 10). 
However, one way of solving the eight-vertex model (~1-14) is to convert it to 
a "solid-on-solid" (SOS) model (Section 3 of Ref. 12, and Section 9.1.2 of 
Ref. 14). We begin this paper by showing that the hard hexagon model is in 
fact a special case of this SOS model. For this case, the eight-vertex 
parameter ~ has the value 

-- K / 5  (1.l.1) 

where 2K and 2 iK '  are the periods of the elliptic functions that naturally 
o c c u r .  

One intriguing feature of the hard hexagon model is that the Rogers- 
Ramanujan and related identities occur very naturally in the calculation of 
the local densities. (9~ These involve functions such as 

6 ( x )  = 
m = l  

= [ I  
m = l  

[(1 - xSm--4)(1 -- xSm- ' ) ]  - '  

[(1 -- X 5m-3)(1 -- X 5m-2)]=1 

(1.1.2) 

where the powers of x in the infinite products increase in intervals of 5. 
In this paper we generalize the hard hexagon model by considering the 

corresponding eight-vertex SOS model with 

= K / r  (1.1.3) 
r being a positive integer which is sometimes (but not always) restricted to 
odd values. We then use the corner-transfer-matrix technique to calculate 
the local height probabilities of this model (these are the analogs of the 
hard hexagon densities) and are led (as we hoped) to various generaliza- 
tions of the Rogers-Ramanujan identities. These are almost certainly 
closely related to Gordon's generalization, (15'16) and involve the functions 

o~ 
Gri(x) = I I  (1 - xrn) -I  ( 1 . 1 . 4 )  

m = l  
m =~ 0, -+ i (rood r) 
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which are natural generalizations of H(x),  G(x), reducing to them when 
r = 5 and i = 1,2. 

1.2. Eight-Vertex SOS Model 

Consider a square lattice _,~, wound on a cylinder so that the last 
column is followed by the first. With each site i associate an integer 
"height" l i . With each face associate a weight W(li, lj ] l,,, ln), where i, j ,  n, m 
are the four surrounding sites, ordered anticlockwise from the lower left, as 
in Fig. 1. Then the partition function is 

Z = 2 I I  W(t, ,~l lm, t~)  (1.2.1) 
(i,j,n,m) 

where the sum is over all the allowed arrangements of heights on the lattice, 
and the product is over all faces (i, j ,  n, m) of the lattice. 

Require that the heights of adjacent sites must differ by 1: this is 
equivalent to taking W(l, m'] l', m) to be zero unless 

] l -  m'[ = [ m ' -  m I = Jm - l '  I = I I ' -  l] = 1 (1 .2 .2 )  

To within a uniform additive shift of l, m', l', m, there are six possible ways 
of satisfying (1.2.2), as shown in Fig. 2. 

Now consider the usual zero-field eight-vertex model, with weights 
a,b,c ,d defined as in Eqs. (1)-(4) of Ref. 11. Define k,~,v,O by Eq. (8) of 

ITI !!n i ..... x 

I 

J 

Fig. I. The square lattice S ,  showing a typical face (i, j ,  n, m) and the two sublattices X and 
Y (denoted, respectively, by crosses and circles). 
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1 

?+1 
v 

a 1 

Fig. 2. 

a~ ~l ~1 Vt 67 
The six possible arrangements of heights round a face of the lattice. The location of 

the sublattices is irrelevant here: crosses and circles may be interchanged. 

Ref. 11, i.e., by 

a = p|174 - ~ ) H ( v  + ~1) 

b = O0(2~l)H(v - V)O(v + ~1) 
(1.2,3) 

c = oH(2~l)|  - ~1)6)(v + ~) 

d = p H ( 2 • ) H ( v  - , ) H ( v  + , )  

where H(u) ,  | are the elliptic theta functions of argument u and modu- 
lus k. Let h(u) be the function 

h(u)  = H ( u ) |  (1.2.4) 

and let 

O' = p O ( 0 ) ,  w t = w 0 + 2 l ~  ( 1 . 2 . 5 )  

where w o is a constant, as yet arbitrary. Then it is shown in Refs. 11 and 12 
that this eight-vertex model on • is equivalent to an SOS model on S 
with weights 

W ( l , l  + 1 

W ( l , l -  1 

w ( l  + z,l 

W ( l -  1,1 

W ( /  + 1,/ 

w(1-  1,z 

Z-1,1) 
/ +  1,l) 
t , l -  1) 
l , l  + 1) 

l,Z + 1) 

l ,z - l )  

= p 'h(v  + ~7) 

= o 'h(v  + ~ ) h ( w z + , ) / h ( % )  

= o ' h ( v  - ~ ) h ( w , _ , ) / h ( w , )  

= o ' h ( v  - ~) 

= o 'h (2~ lh (w ,  + ~1 - v ) / [ h ( % ) h ( % + l ) ]  

= p ' h ( 2 n ) h ( w l -  ~ + v) 

(1.2.6) 

(taking J to be the dual of the lattice used in Ref. 12, where the heights 
are associated with faces rather than sites). 

From the usual definitions (17'18) of the elliptic theta functions, 

h(u)  = 2_pl/4sin 7ru f i  ( 1 -  2 p n c o s  qrU + p 2 n ) (  1 __ p2n)  2 (1.2.7) 
n = I  

where K and K'  are the complete elliptic integrals of the first kind, and p is 
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the "nome" 

/) = e ~K'/ ,v ( 1 . 2 . 8 )  

Noting that K is a function only of/), from (1.2.5)-(1.2.7) we see that 
we have five parameters at our disposal, which we can take to be/), p l/4p,, 
~/, w o, and v. Here we shall regard the first four as real constants, and v as a 
variable (possibly complex). In particular, p must lie in the interval 

- 1 < / )  < 1 ( 1 . 2 . 9 )  

which implies that K is real and positive. 
In Refs. 11 and 12, particular attention is paid to the case when there 

exists an integer L such that 2L7/ is a period of the elliptic functions. This 
means that we can regard two heights l i in the SOS model as being equal if 
they differ only by an integer multiple of L: it is then natural to interpret 
the adjacency restrictions (1.2.2) to modulo L, and this can be convenient 
in setting up a Bethe ansatz with which to solve the SOS model. [Incident- 
ally, Pegg (19) has obtained the general conditions under which an SOS 
model satisfying (1.2.2) can be solved by a Bethe ansatz.] 

Here we shall not adopt this "modulo L"  viewpoint, but will interpret 
(1.2.2) strictly as written. This means that if we move from left to right 
along a row of aS, returning ultimately (because S is wound on a cylinder) 
to our starting point, then we must see as many increases in height 
(between adjacent sites) as decreases. (In Bethe ansatz terms, there are as 
many "up arrows" as "down arrows" per row.) It follows that we can in 
fact ignore the restriction (9) of Ref. 11, as well as the renormalization (10), 
and take H(u), | to be the usual elliptic theta functions. (17'is) In (1.2.3) 
we have used the fact that O(u) is an even function, while H(u) is odd. 

When we say, before (1.2.6), that the eight-vertex and SOS models are 
"equivalent," we mean that the eigenvalues of the transfer matrix of the 
former are also eigenvalues of the transfer matrix of the latter. If the SOS 
model has no eigenvalues larger than the maximum eight-vertex eigenval- 
ues, then it follows that the two models have the same partition function 
per site in the limit when the number of rows of S becomes infinite. 

The eigenvectors and eigenvalues of the SOS model transfer matrix are 
given by Eqs. (1.16)-(1.23) or Ref. 13, with n = N/2. [Actually these 
equations are over-restrictive: all the eight-vertex eigenvalues are certainly 
given by them (z) but the SOS model has other eigenvectors and eigenvalues 
obtained by multiplying the RH sides of (1.16) and (1.23) by z t and z 2, 
respectively, while also multiplying the two additive terms on the right- 
hand side of (1.21) by z and z - i .  This z can be any complex number, and 
this extra degree of freedom reflects the fact that we are at present allowing 
the heights to take all integer values from - m  to m, with no "height 
boundary condition." When they are restricted to a finite set of values, 
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boundary constraints are imposed on the eigenvectors which fix z. For the 
hard hexagon case discussed below, it appears that zl~ = 1. The eigenvec- 
tors are in general linear combinations of those given in Ref. 13 that 
correspond to degenerate eigenvalues.] 

The eigenvectors of the SOS model are independent of v (reflecting the 
fact that eight-vertex transfer matrices with the same values of k and 7, but 
different values of v, commute(2)). The eigenvalues are independent of the 
parameter w 0. 

A trivial variation of the model is to associate extra weights F(/~,/j), 
F-l(li,/j.) with the faces above and below each horizontal edge (i, j). 
Similarly, weights G(li, lm), G -  1(l i, l,n) can be associated with the faces to 
the right and left of each vertical edge (i, m). Clearly such weights cancel 
out of the partition function, but they multiply the weight function 
W(l,m'] I',m) by 

F(l, m')G(l, l ' ) / [  F(l' ,  m)G(m',  m) ] (1.2.101 

One particular such transformation is to multiply W by x (1 ) / x  (m), for any 
function x(1). 

Performing both, taking 

F( l , l+  11= G(I+ 1 , I ) = [ G ( I -  1, l)]  - t  

= [ h(w,) ] '/2 (1.2.11) 

and x(l)  = i t, the weights (1.10) become 

W(I , I+  1 I l -  1,I) = W ( I , l -  1 I l +  1,l) = r 

W ( l + l , l l l ,  l - 1 ) = W ( I - l , l l l ,  l + l ) = p ,  (1.2.12a) 

W(l+ 1,111,1+ 1)= v,, w(z-  1,l[l,l- l)= 

where al, az,/~l,/31, Yl, 8l are the weights of the six possible configurations, 
as shown in Fig. 2, and are given by 

= o'h(v + 7) 

fll = o'h(~ - v)[ h(Wl_l)h(W,+l) ] ' /2/h(w,)  
(1.2.12b) 

Vl = p'h(2~)h(w, + ~ - v ) /h(wl)  

8 l = p'h(2~)h(w I - ~ + v) /h(wl)  

From now on we shall take W to be given by (1.2.12) rather than 
(1.2.6). This is a more symmetric form, as it has the property that 

W ( l , m ' l l ' , m ) =  W ( l , l ' l m ' , m ) =  W ( m , m ' l l ' , l  ) (1.2.13) 

The only further transformation of the type (1.2.10) that can be applied 
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without violating these symmetries is to multiply W(I, m'] l', m) by 

x '  mglgm/ ( gt, gm,) (1.2.14) 

where x 4 = 1 and gl is arbitrary. When x = i and gl = 1, this transformation 
merely negates/3 l . 

Note that if the height of one site is even, then the heights of all its 
neighbors must be odd. If we divide the square lattice into two sublattices 
X and Y (the crosses and circles of Fig. 1), such that any site of X has 
neighbors only in Y, and conversely, then it follows that Z is the sum of 
two individual partition functions Z~ and Z 2. In Z~, the  only allowed 
configurations are those with odd heights on X sites, and even heights on Y 
sites. Conversely for Z z. Thus in this sense the SOS model splits into two 
separate, but equivalent, models. We shall refer to them as "sub-SOS" 
models. 

1.3. Hard Hexagon Model 

The hard hexagon model (8~ is a special case of the hard square model 
with diagonal interactions. With each site i of the square lattice J 
associate an occupation number o i, such that ai = 0 or 1 according to 
whether the site is empty or contains a particle. As with the SOS model, 
associate a weight WH(oi,ojlOm,On) with each face (i ,j ,n,m). No two par- 
ticles can be adjacent, which is equivalent to saying that oi~ = 0 for all 
edges (i, j )  of J .  

This model can be solved provided a certain restriction (Eq. 24 of Ref. 
8) is satisfied (the hard hexagon model is included in this solvable case). 
The weights W H can then naturally be parametrized in terms of elliptic 
functions. Using the parametrization of Eq. (2.12) of Ref. 20, or equiva- 
lently Eq. (14.2.39) or Ref. 10, replacing u therein by ~r(~ - v)/(2K) and 
noting that O(u) and 01(u ) therein are proportional to h(2Ku/v)  (with 
appropriate elliptic moduli), we find that the nonzero values of W H are 

where 

WH(00100 ) = h(5rt - v)/h(4~l) 

W H(IOIO0 ) = W H(O0]O1) = h(~ - v)/[h(2~)h(4~l)] 1/2 

WH(01 [00) = WH(001 10) = h(71 + v)/h(2~) 

WH(10]01 ) = h (3 r /+  v)/h(4~) 

(1.3.1) 

WH(01 [ 10 ) = h ( 3 r / -  v)/h(2~) 

r /=  g/ /5 (1.3.2) 
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We can convert  this to an SOS model  satisfying (1.2.2). For  each 
occupat ion number  o /de f ine  a h e i g h t / / b y  

l i = 3 - 2oi,  if i is on sublattice X 

= 2oi + 2, if i is on sublattice Y (1.3.3) 

It then follows that the restrictions o~, o; = 0, 1 and oia j = 0 are equivalent to 

1 < l i ,/j < 4,  I l, - / j l  = 1 (1 .3 .4 )  

for all pairs (i, j )  of adjacent  sites. Further,  defining 

W(t , ,  ~ I/~ ,tn) = W , ( o , , o j  I o r ,o~) (1.3.5) 

and using the relations 

h ( - u )  = - h ( u )  = h(ZK + u) (1.3.6) 

we find that this funct ion W is precisely the same as that given by (1.2.12), 
with 

0' [h(2.)]- '  = , w 0 = 0 (1 .3 .7 )  

The definitions (1.3.3) ensure that l i is odd on an X site, even on a Y 
site, so we have a sub-SOS model.  However,  we could just  as easily have 
interchanged the X and Y sublattices, and obta ined the other  SOS model 
[with the same weights, and still satisfying (1.3.4)]. Altogether, it follows 
that 

Zso s = 2ZHH (1.3.8) 

where ZH~ is the hard-hexagon part i t ion funct ion and Zso s is the eight- 
vertex SOS part i t ion function, given by (1.2.1), (1.2.12) and (1.3.7), with 
each height l i restricted to the values 1, 2, 3, 4. 

R e s t r i c t e d  a n d  U n r e s t r i c t e d  S O S  M o d e l s .  Let us call this SOS 
model, where 1 ~< li < 4, the "restr icted" SOS model. It is not  the same as 
the unrestricted model  discussed in Section 1.2, where - m < l~ < m, but  it 
is closely related. 

Consider the unrestricted model. In particular, consider two successive 
rows R and R '  of _ f ,  and the product  P of the weights of the intervening 
faces. Suppose that all the heights on R lie between 1 and 4. Then  P = 0 
unless the heights on R '  also all lie between 1 and 4. To see this, note that if 
R '  is the upper  row, then it can only contain a height 0 or 5 via the 
conf igura t ions  shown in Fig. 3. These  con ta in  weights W(21110) ,  
W(34 [ 45), respectively, and from (1.2.12) these vanish because 

h(wo) = h(O) = O, h(ws) = h(10v/) = h ( Z K )  = 0 (1.3.9) 

Similar considerations apply if R '  is the lower row. 
If all the weights were finite, this would mean that the transfer matrix 

of the unrestricted SOS model  broke up into diagonal blocks, one of which 
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0 x 
131 

1 4 

131 ] [ [34 
2 3 

5 4 

_ 134 I 

4 3 
Fig. 3. Configurations containing heights 0 and 5 in the upper row, and only heights 1, 2, 3, 4 

in the lower row. 

would be the restricted SOS model transfer matrix. More precisely, this 
would happen if ~/= K / 5  and w 0 is allowed to tend to zero. 

In fact the situation is more complicated than this, since some of the 
other transfer matrix elements [e.g., those containing a factor W(4, 5 15, 4)] 
then become infinite. Even so, we have still been able to verify for a 
two-column lattice that the relevant eigenvalues and eigenvector elements 
of the unrestricted model become those of the restricted one. This suggests 
that the restricted and unrestricted SOS models may have at least some 
transfer matrix eigenvalues in common. This would be consistent with the 
fact that the hard hexagon model (in its regime I, III, and IV) has the same 
free energy per site as the corresponding eight-vertex model. (21) 

Another argument in favor of this assertion is to compare the equa- 
tions that determine the transfer matrix eigenvalues of the unrestricted SOS 
model and the hard hexagon model. Each eigenvalue A is an entire 
function of the variable v. For the SOS model, it follows from Eq. (1.23) of 
Ref. 13 that each A(v) satisfies the functional equation 

A(v) Q(v )  = zep(v - ~1) Q ( v  + 2~/) + z- 'dp(v  + 71) Q ( v  - 2~/) (1.3.10) 

where z is the parameter discussed in Section 1.2, 

~(v)  = [p|  ] N (1.3.11) 

N is the (even) number of columns of the lattice J ,  and 

N/2 
Q ( v )  = 1-I h ( v  - uj) (1.3.12) 

j=t  

b l l ,  . . . , b i N ~  2 being constants. 
Writing (1.3.10) with v replaced by v + 2k~/, where k = 0, 1 . . . . .  4, 

noting that 

Q ( v  + 10~/) = ( -  1) N/2 Q ( v )  (1.3.13) 

we obtain five homogeneous linear equations for Q(v  + 2k~/), k = 0, 
1 . . . . .  4. Eliminating these gives a 5th-degree equation for the function 
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A(v), and it can be verified that this equation is automatically satisfied if 

A(v)A(v - 2~/) = ~(v + T/)~(v - 37/) + qs(v - r/)A(v + 4r/) (1.3.14) 

provided 

z '  = - ( -  l) N/2 (1.3.15) 

(In fact the 5 x 5 matrix of coefficients then has rank of only 3.) 
However, (1.3.14) is precisely the equation satisfied by the eigenvalues 

of the transfer matrix of the hard hexagon model [Eq. (3.3) of Ref. 20, using 
(1.3.7) and the transformations mentioned prior to Eq. (1.3.1) herein]. Thus 
there may be (and almost certainly are) eigenvalues satisfying both (1.3.10) 
and (1.3.14), provided z in the unrestricted SOS model is given by (1.3.15). 

1.4. Restr icted SOS Model  with ~7 = K/r 
From now on we consider in this paper an SOS model satisfying 

(1.2.2), (1.2.5), and (1.2.12), with 

~1 = K / r  (1 .4 .1)  

w o = 0 (1.4.2) 

and each height/,, restricted to the integer values 

l, = 1 , 2 , . . . ,  r -  1 (1.4.3)  

Here r is an arbitrary integer not less than 3. 
For r = 5 we regain the restricted SOS model which we have shown to 

be equivalent to the hard hexagon model [more precisely, to the hard 
square model with diagonal interactions that has weights given by (1.3.1)]. 
Thus the present model is a natural generalization of the hard hexagon 
model. It has the property that h(w~) is nonzero for l = l . . . . .  r - 1, while 

h(wo) = h(wr) = 0 (1.4.4) 

This means that the weights (1.2.12) are finite (and in general nonzero) 
provided the restriction (1.4.3) is satisfied. 

As with the r = 5 case, it is likely that this model is in some sense 
equivalent to the unrestricted model with - oe < l i < oo, and hence to the 
eight-vertex model. However, we shall not need this equivalence. All we 
need is the fact that the restricted model, like the unrestricted one, satisfies 
the star-triangle relation [Eq. (13.3.6) of Ref. 10, (2.49) of Ref. 22]: 

W(b,c l a, g)W'(a, glf, e)W"(g,c l e, d) 
g 

=~W"(a ,b[ f ,g )W' (b , e [g ,d )W(g ,d[ f , e )  (1.4.5) 
g 

Here W is the weight function defined by (1.2.2), (1.2.5), (1.2.12); W' and 
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W" are defined similarly, but  with v replaced by v'  and v", respectively, 
where 

v I = v + v 1' - ~/ (1.4.6) 

[If we set u = ~7 - v, then we regain the usual relation u' = u + u":  Eq. 
(13.3.10) of Ref. 10.] 

The equat ion (1.4.5) is to be true for all values of the six heights 
a, b, c, d, e, f. Since W, W' ,  W "  each vanish unless their arguments  satisfy 
(1.6), we must  have [a - b] = ]b - c] = [c - d[ = ] d -  e I = [e -f[--If- a[ 
= 1. Apar t  f rom a uniform additive shift of all the heights, this means that 
there are 20 cases to consider. These occur in pairs, one being obtained 
f rom the other by interchanging a with d, b with e, and c with f ,  which 
merely interchanges the two sides of the equat ion (1.4.5). 

It follows that  (1.4.5) consists of ten distinct equations. Taking 
a~ . . . . .  8l I to be the values of a l . . . . .  8 l in (1.2.12) when W, v are replaced 
by W',  v ' ;  and similarly for a t ' ,  . . . ,  8l" ; seven of the equations are 

t t !  8 ! ! t /  ! / t  fila~fiz + 7z t+lTt" = 8l+t718l+1 + Bt+lat+l  flZ+l 

# t v : - ,  X + v,~:v:' = ~,v:~:' 

B,.:8," + v,8;+ , X = ~,B,'8,'+ 1 

8,~;8," + B,s;+, X = ~,81~;' 

8 , ~ ; _ 1 X  + B,~;~;' = ~lBlv;'- ,  
G OLZO~ It 1 1, 

l + l  l l + l  ~ O Q O L l + l O l l  

'~l+ ~ B;+ ~ X = "l#;#/'+ , 

(1.4.7) 

The other three equations can be obtained by  interchanging the unpr imed 
and double-pr imed symbols. 

For  the unrestricted model,  l in (1.4.7) takes all integer values and we 
can verify directly, using (1.2.12b), that  the equations are satisfied. 

For  the restricted model,  each of a, b . . . . .  f must  lie in the interval 
1 . . . . .  r - 1. This means  that l takes the values 1 . . . . .  r - 2 in the first 
equat ion in (1.4.7), the values of 2 . . . .  , r - 2 in the next four equations, 
and  the values 2 . . . . .  r - 3 in the last two. Further,  the height g in (1.4.5) 
must  also lie in the interval 1 . . . . .  r -  1: this means that in the first 
equat ion the terms 

/~la]  /~{' , /~r_ 10~_ 1 /~rt'_ 1 (1.4.8) 

should be deleted. (They occur  for l = 1 and l = r - 2, and correspond to 
g = O, r, respectively.) 

However,  f rom (1.2.12b) and  (1.4.4) it is clear that  the terms (1.4.8) 
vanish for the unrestricted model. It follows that (1.4.7), and hence the 
s tar- t r iangle relation (1.4.5), is indeed satisfied by the restricted SOS 
model. 
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The Case When r Is Odd. The model has some special features 
when r is odd, i.e., when there exists an integer n such that 

r = 2n + 1 (1.4.9) 

(Note that the hard hexagon model is such a case, with n = 2.) In this case, 
there are as many even heights in the allowed range (1.4.3) as there are odd 
heights. Each of the two sub-SOS models can then naturally be expressed 
as a "lattice gas" generalization of the hard hexagon model. For the one 
with odd heights on X sites and even heights on Y sites, define oi by 

o i=�89 1 - / ~ ) ,  if i E X  

= � 8 9  2), if i ~ Y (1.4.10) 

Then the oi are integers with permitted values 0, 1 . . . . .  n - 1, satisfy- 
ing 

oi+oj=n-2 or n - 1  (1.4.11) 

for all adjacent pairs (i, j )  of sites. We can regard these o i as "occupation 
numbers" and use these to define the states of the system. 

The SOS model weight function W is the same for all faces of the 
lattice J ,  but the mapping (1.4.10) is not: it depends on whether the face 
has an X or a Y site at its lower-left corner (if S were a checkerboard it 
would depend on whether the face were black or white). It follows that W, 
when regarded as a function of the occupation numbers ~+, may similarly 
depend on the face under consideration. In fact this does not occur, 
because the function W defined by (1.2.12), (1.4.1), and (1.4.2) has the 
symmetry property 

W ( r - l , r - m ' l r - l ' , r - m ) =  W(l,m'll',m ) (1.4.12) 

Thus when (1.4.9) is satisfied, each sub-SOS model is equivalent to a 
uniform lattice gas in which there must be either n - 2 or n - 1 particles on 
every pair of adjacent sites. 

1.5. Expressions for the Local Height Probabilities 

The Rogers -Ramanujan  identities naturally enter the calculation of 
the sublattice densities of the hard hexagon model. (9) For the more general 
case of our restricted SOS model, the analogs of these densities are the local 
height probabilities: 

Pa=Z-l~6(ll,  a) II W(li,l/[lm,I~) (1.5.1) 
(i,j,n,m) 

where Z is the partition function defined by (1.2.1) and the sum and 
product have the same meanings as therein, l I is the height of the center site 
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1 of the lattice, and a is an integer between 1 and r -  1. Thus P~ is the 
probability that site 1 has height a, and it follows from (1.2.1) and (1.5.1) 
that 

r - - I  

P~= 1 (1.5.2) 
a = l  

In evaluating the probability P~, we suppose initially that the lattice J 
is planar (i.e., not  wound on a cylinder or torus) and finite, and fix the 
boundary heights to have the values they would assume in a particular 
ground state configuration [i.e., a set of values of the heights that maxi- 
mizes the summand in (1.2.1)]. Finally, we shall take the limit when the 
lattice becomes infinitely large, all boundary sites being infinitely far from 
the center site 1. 

For  definiteness, let us suppose that site 1 lies on the X sublattice, and 
refer to sub-SOS models, states, and boundary conditions as "even" if they 
have even heights on X sites, odd heights on Y sites. If the converse, then 
"odd." For every even ground state, an odd one can be formed by 
interchanging the X and Y sublattices. Thus the ground states of the total 
SOS model can be divided into equal numbers of even and odd ground 
states. 

P~ will depend on the particular ground state that is chosen for the 
boundary conditions. One significant but trivial dependence is that if the 
ground state is even, clearly 

Pa = 0, unless a is even (1.5.3) 

Thus in this case the summation in (1.5.2) can be restricted to even values 
of a. (In the other case it can be restricted to odd values.) 

If there is only one even (and one odd) ground state, then we expect 
the system to be "disordered." This means that in the limit of a large lattice 
we expect Pa to be independent of the boundary conditions, so long as they 
are even. If there is more than one even ground state, then the system is 
"ordered" and Pa depends on the boundary conditions. 

As with the hard hexagon model, we can calculate Pa by using corner 
transfer matrices. (1~ This is done in Appendix A, attention being focused 
on the cases when v is real and - ~ < v < 37. These are the cases when the 
weight function W is positive, or can be made so by an appropriate choice 
of 0' and by applying a transformation of the type (1.2.14) with x = i, i.e., 
by negating/3l. 

We have to distinguish the cases when v is greater or less than 7/, and 
when p in (t.2.7) is positive or negative. Altogether this gives us four 
"regimes" to consider. Labeling them analogously to those of the hard 
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hexagon model, they are 

regimeI:  - l < p < 0 ,  v / < v < 3 ~  
regimeII :  0 < p < l ,  ~ < v < 3 ~  
regime Il l :  0 < p < 1, - ~ < v < r/ 
regime IV: - l < p < 0 ,  - ~ < v <  

(1.5.4) 

It is convenient to define an integer t such that 

t = 2 - r, in regimes I and II 

= 2, in regimes l l I  and IV (1.5.5) 

and to define a function E(z, x) by 

E(z,x) = f i  (1 - x " - ' z ) (1  - xnz- ' ) (1  - x n) (1.5.6) 
n = l  

for all complex numbers z,x such that Ix I < 1. This is basically an elliptic 
theta function, and by Jacobi's triple product  identity (Theorem 2.8 of Ref. 
16), it has the series expansion: 

oo 

E(z,x) = 2 ( -  1) "xn(n-1)/2zn (1.5.7) 
11= - - ~  

Regimes II and III. The parameterp  is positive in regimes II and Ill ,  
so we can define e and x (both real and positive) so that 

p = e -~, x = e x p [ - 4 r r Z / ( r e ) l  (1.5.8) 

We find in Appendix A that 

P~-- S-'uaXm(a,b,c;xt ) (1.5.9) 

f o r a = l  . . . .  , r - l ,  where 

b/a ~.  X ( 2 - t ) ( 2 a  - r)2/( 16r)E(x a, X r) (1 .5 .10)  

Xm(a,b,c;q)= ~ q~'(O (l.5.11) 
t2 . . . . .  l,, 

qb(l) = k J I/j+2 - /j I / 4  (1.5.12) 
j = l  

S= ~ uaXm(a,b,c;x* ) (1.5.13) 
l < a < r  

Here 1 = {ll,l 2 . . . . .  /m+2} is a set of integer heights satisfying the restric- 
tions 

1.<6  r-1, 16+,-31=1 (15.14a) 
for j >  1. The summat ion  in (1.5.11) is over all allowed values of 
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l 2 . . . .  , lm, the end heights II, lm+l ,  lm+ 2 being fixed at the values 

l, = a, lm+, = b, lm+ 2 = C (1.5.14b) 

Thus a, b, c must  all lie in the range 1 , 2 , . . . ,  r - 1, and  must  satisfy 

Ib - c I = 1, m + a - b -- even (1.5.15) 

We can verify the symmet ry  propert ies  

U r _ a = U a ,  X m ( r - a , r - b , r - c ; q ) = X m ( a , b , c ; q )  (1.5.16) 

which are consequences  of the symmet ry  (1.4.12) of W. 
The  heights I 1 . . . .  , lm+ 2 correspond to the heights of sites on the 

center  row of J ,  starting at the center site 1 and  moving  r ightwards to the 
boundary .  Thus  lm+ 1 and lm+ 2, i.e., b and  c, are bounda ry  heights, and  are 
to be fixed according  to the g round  state chosen for the bounda ry  condi-  
tions. 

In a ground state, the values of l I . . . . .  lm+ 2 are such as to maximize  
the s u m m a n d  in (1.5.11). In  regime II I ,  t is positive, so ]ql < t and  the 
g round  states are ob ta ined  by minimizing ~(!). Plainly this is achieved by 
taking 

lj = I x ,  if j is odd  

= ly ,  if j is even (1.5.17) 

where l x , l  Y are any  two integers satisfying Ilx - lr l  = i, 1 < l x , l  Y <<. r - 1. 
There  are 2r  - 4 such values of l x and Iy, so there are 2r  - 4 g round  states, 
of which r - 2 are even and  r - 2 are odd. (For  the hard  hexagon  model ,  
with r = 5, this gives 5 - 2  = 3 ground states, in agreement  with the 
observat ion  of Huse  (24).) 

We  remark  in Append ix  A that  all g round  states (for all regimes) are 
invar iant  under  uni form shifts in the southwest  to nor theas t  d iagonal  
direction. W e  can use this to obta in  the g round  state heights on all rows of 
J ,  given the heights l I . . . .  , lm+ 2 on the center  row. F r o m  (1.5.17) it 
follows that  in regime I I I  a g round  state has 

l j =  L x ,  if j ~ X 

= l r ,  if j E  Y (1.5.18) 

for all sites j of the lattice. 
In  regime II, t is negative and  the g round  states maximize  ~(i). This is 

achieved by  taking the / j  (for the linear sequence l 1 . . . . .  lm+2) to increase 
in unit  steps to r - 1, then decrease to 1, then increase again to r - 1, and  
so on. More  precisely, let jo be any  integer f rom 1 to 2r  - 4 and,  for given j ,  
let 

k = j  - J 0 ,  m o d ( 2 r  - 4) (1.5.19a) 
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(thus 0 < k < 2r - 4). Then  

/j. = 1 + ]k - r + 21 (1.5. t9b) 

There  are 2r  - 4 such sequences, depending on the value of j0, so there are 
2r  - 4 ground states, as in regime II I .  

In  these regimes I I  and  I I I  there are as m a n y  ground states as there are 
permit ted values of b and  c, with ]b - c I = 1. Thus  we can either select a 
ground state and  then evaluate  b and  c f rom (1.5.14b), or we can choose b 
and  c and  then determine the corresponding ground state. 

As remarked  above,  we ul t imately want  to calculate Pa in the limit of 
an infinitely large lattice. This corresponds to letting m - - > m  in (1.5.9)- 
(1.5.15), while keeping the ground state [i.e., l x and ly in (1.5.17), or j0 in 
(1.5.19)] fixed. 

Regimes I and IV. In these regimes p is negative. We  now define e 

and x (both real and  positive) by 

p = - e - ' ,  x = e x p ( -  2~r2/re) (1.5.20 t 

(For  the hard  hexagon case, this x is the square of that  used in Refs. 8, 9, 
and  20.) We  find that  

Pa = T-lvaYm(a,b, c;x-t)  

for a = 1 . . . . .  r - l, where 

13 a = X[(  t -  l ) r - ( t -  2 ) a l a / 2 r E ( x a  ' __ x r / 2 )  

2 
12 . . . . .  l,. 

= 

j = l  

T= ~a v. Ym(a, b,c;x-t)  
l < a < r  

Here  ! and  the l 2 . . . . .  l m summat ion  have  the same meaning  as in 
The  funct ion H(l, l', l") is defined by 

H(l,l ' , l")=O, if l:/:l" 

H( l , l+ l , l )=O,  if l<~r/2 

= 1 ,  if l > r / 2  

H(l, l-1,l  I=1, if t r/2 
= 0, if l > r/2 

(1.5.211 

(1.5.22) 

(1.5.231 

(1.5.24) 

(1.5.25) 

(1.5.14). 

(1.5.26a) 

(1.5.26b) 

These formulas  (1.5.20)-(1.5.26) apply  regardless of whether  r is even 

(1.5.26c) 
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or odd, but only when r is odd do we have both the symmetries 

vr_ ~ = va, Y m ( r -  a , r -  b , r -  c ;q)  = Ym(a ,b , c ;q )  (1.5.27) 

[which are analogous to (1.5.16) and consequences of (1.4.12)]. Further, 
there are complications in discussing the ground states when r is even. 
(Both these difficulties arise because the corner transfer matrices are not 
diagonal in the limit x - ~ 0  when r is even: the necessary diagonalization 
means that if /j-1 = / j+ l  " ~ "  r /2 ,  then /y is merely an eigenvalue label and 
does not correspond to a height on the lattice.) 

For r odd, the ground states are then of the form given by (1.5.17) and 
(1.5.18). For regime I we want to minimize ~(i), which corresponds to 
taking 

(l  x , l r ) = ( n , n +  1) or ( n +  1,n), where n = ( r -  1)/2 (1.5.28) 

Thus there are just two ground states, one for each sub-SOS model, and we 
expect the system to be disordered. 

For regime IV we want to maximize t)(l), which corresponds to taking 
l x , l  Y to be any pair of integers in the range 1 , . . . ,  r - 1  satisfying 
[l x - lrl = 1, except for the values (1.5.29). Thus there are 2r - 6 ground 
states in regime IV. 

2. EVALUATION OF THE PROBABILITIES Pa 

2.1. General Comments 

We have obtained the expressions (1.5.9), (1.5.21) for the local height 
probabilities Pa, involving the m-fold sums X m and Ym defined by (1.5.11) 
and (1.5.23). Our object in this part is to obtain more tractable expressions 
for X m and Ym, considered as functions of their argument q; and to study 
the limit m ~ oe. In this limit we find that X m and Ym are actually modular 
forms (p. 114 of Ref. 25). Indeed the results in regimes I, III, and IV are 
sums of at most two simple quotients of elliptic theta functions (Ref. 18, 
Chap. 21). Regime II yields multidimensional theta series. 

Our approach is to first keep m finite, and show that X m and Ym can 
be written as sums of Gauss/an polynomials. This treatment has its genesis 
in Ref. 26, which in turn was suggested by I. Schur's original treatment of 
the Rogers-Ramanujan-Schur identities. (27) While this approach may be 
more cumbersome than the one used for regimes I, III, and IV of the 
original hard hexagon model (Ref. 10, pp. 432-443), it does seem essential 
in this more general setting. In particular the classical theory of q-difference 
equations and q series! 28'29) appears barely adequate (see Appendix B) to 
handle regime II via polynomials. Unfortunately we do not know what the 
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Rogers-Ramanujan-type "series product" identities are for either regime II 
or IV except when r = 5 [Eqs. (14.5.22) and (14.5.50) of Ref. 10]. We hope 
to discuss the Rogers-Ramanujan aspects of regimes I and III in a 
subsequent paper; indeed the appropriate identities for regime I are given 
in Ref. 30 and in Eq. (7.3.7) of Ref. 16. 

2.2, Gaussian Polynomia ls  

The Gaussian polynomials (which we shall use for calculating X m, Ym) 

recurrences (p. 35 of Ref. 16) 

[ N ] - [ N M 1  ] 

M - l ]  

=qN-M[N-1]M 1 (2.2.2) 

and for ]q] < 1, 

where 

In addition to the recurrences, we need that 

[N]=[N_NM] (2.2.4) 

lim IN + M] = Q(q)-, (2.2.6) 
M,N---) oe M 

Q(q) = l~ (1 - q") (2.2.7) 
n = l  

We shall also use the notations 
n - - I  

(A) = (A;q) = I I  (1 - qJA). (2.2.8) 
j=0 

are defined as 

1 
j= l  1 -- qJ ' 

= 0 otherwise (2.2.1) 

We shall use the subscript q only when confusion might otherwise arise. 
It is easy to prove (by mathematical induction on N) that these are 

indeed polynomials in q. One merely utilizes either of the fundamental 
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Thus in particular 

( q ) ~ =  ~ (1 - q J+ ' ) - -  Q(q) 
j=o 

Two simple identities that we shall use are 

(A),,,+, = (A)m(qmA), 

(A) ,  = ( -  A)nq(l/2)"(~-l)(ql-nA-')~ 

(2.2.9) 

(2.2.1o) 
(2.2.11) 

2.3. Regime I I I  

We shall consider the regimes in order of difficulty: regime III is the 
easiest to handle and provides a good prototype for subsequent work. 

The function Xm(a, b, c; q), or simply Xm(a, b, c), is defined by (1.5.11), 
(1.5.12), and (1.5.14). By examining admissible sequences of {l 2 . . . . .  lm} 
and splitting them into two classes according to whether l m - - b -  1 or 
l m = b + l, we see that the Xm(a, b, c) are totally defined by the following 
recurrences and initial values (m > 0, 1 < a < r - 1): 

Xm(a,b,b  + 1) = Xm_,(a ,b  + 1,b) + qm/2xm_l(a,b - 1, b), 

1-<< b ~  r - 2  (2 .3 .1 )  

Xm(a,b,b  - 1) = X m ,(a,b - l ,b) + qm/ZXm_,(a,b + 1,b), 

2 <  b <  r -  1 (2.3.2) 

Xm(a,O , 1) = Xm(a,r ,r  - 1) = 0 (2.3.3) 

X o ( a , b , c ) = l ,  if a = b  and c=b+__ 1 

= 0, otherwise (2.3.4) 

Our main object is to show that as m ~ m ,  X m converges to a 
difference of two theta series divided by Q(q). 

T h e o r e m  2 . 3 . 1 .  F o r  m >i 0, 1 < a , b , c  < r, c = b + I, m + a - b an 
even integer, 

Xm(a,b,c  ) = q(a2-a)/4{Fm(a,b,c ) - F m ( - a , b , c ) }  (2.3.5) 

where 

Fm(a'b'c) = x= ~ -~  q(r-l)X(rX-a)+[bc+(2rX-a)(b+c-1)]/4[ 1 (m + am-- b) - rX ] 

(2.3.6) 
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[Because of the definition (2.2.1), for given m,a,b there are only a finite 
number  of nonzero terms in the X summation.] 

Proof. Since (2.3.1)-(2.3.4) uniquely define the Xm(a,b,c), we need 
only show that the right-hand side of (2.3.5) satisfies the same conditions. 
Now 

Fm(a,b,b + 1) - Fm_ (a,b + 1,b) 

= ~ q(r-l)X(rX-a)+b(b+l+4rX-2a)/4 
~=--~ 

x  (m+a-b)-rX - � 8 9  

Using (2.2.3) to simplify the bracketted difference of Gaussian polyno- 
mials, it follows at once that 

Fm(a,b,b + 1) - Fm_~(a,b + 1,b) = q'/2Fm_~(a,b - 1,b) (2.3.8) 

Similarly, 

Fm(a,b,b - 1) - Fm_](a,b - 1,b) 

= 2 q(r-l)•(rX-a)+(b-l)(b+4rX-2a)/4 

• � 8 9  - � 8 9  (2.3.9) 

and on usmg (2.2.2) we obtain 

Fm(a,b,b - 1) - Fm_t(a,b - 1,b) = qm/2Fm_,(a,b + 1,b) (2.3.10) 

Thus Fm(a,b,c ) satisfies the linear recurrence relations (2.3.1) and 
(2.3.2). Since these are independent of a, so does Fro( -a ,  b, c), and hence 
the expression (2.3.5) for Xm(a, b, c). 

It remains to verify that (2.3.3) and (2.3.4) are satisfied. From (2.3.6) 

Fm(a'O'l)= x= ~ -~  q(r- l)X(rX--a)[ �89 +ma) -- rX ] (2.3.11) 

Fm(a'r ' r -  l )= x= ~-~o q(r--l,(X+l/2)[r(X+I/2)--al[ �89 + a) --rnr(x + 1/2) ] 

(2.3.12) 
Using (2.2.4) and replacing X by - ) ~ , -  1 - ~ ,  respectively, in these two 
equations, we find that 

Fm(a,O, 1)= Fm(-a,O,l),  Fm(a , r , r -1 )=  F m ( - a , r , r -  I ) (2.3.13) 

From (2.3.5) it follows immediately that (2.3.3) is satisfied. 
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Finally, f rom (2.2.1) and (2.3.6), Fo(a,b,c ) will be zero unless a -=  b 
(mod 2r). Remember ing  that 1 < a, b < r, from (2.3.5) we obtain 

Xo(a, b, c) = q(,~2_,~)/4Fo(a, a, C)Sa. b (2.3. t4) 

where, as in part  I, 

68, b -  6(a,b) = 1, if a = b 

= 0, otherwise (2.3.15) 

For  Fo(a, b, c), the only nonzero term in the summat ion  in (2.3.6) is that 
with X = 0; hence 

Fo(a,a,c ) = q (a-a2)/4 (2.3.16) 

It follows that (2.3.4) is also satisfied, which completes the proof  of 
Theorem 2.3.1. �9 

We now go on to consider the limit m ~ ~v. F rom (1.5.9), the argu- 
ment  q of the funct ion Xm(a,b,c; q) is q = x t. F rom (1.5.5), t = 2 in regime 
III, so here we have 

Iql < 1 (2.3.17) 

We shall need the funct ion A(a ,d ;q) ,  defined for 1 < a <  r - 1 ,  1 < d 
< r - 2 b y  

A(a,d;q)= ~ q r(r-l)x2+rdx+a(a-l)/4 
~ = - - ~  

• {q-(r-Oax-(1/2)aa_ q(,-Oax+(1/2)oa } (2.3.18) 

i.e., using (1.5.7), 

~X(a, a; q) = qa~O-~/4(q-~,/2~a,,F_,[ _ q ~ r - , ~ , ' - ~  +rd, q2r~r-~] 

-q('/2)aaE[-q("+a)(" O+~d, q2"(r--')l} (2.3.19) 

Theorem 2.3.2. For 1 < a , b , c < r , c = b + _  1, 

mlimo Xm(a,b,c)= Q(q)-'qbr189 + c -  1);q)  (2.3.20) 

where the limit is taken through values of m with same parity as a - b. 

Proof. This is a direct consequence of Theorem 2.3.1. One merely 
applies (2.2.6) to the Gaussian polynomial  in (2.3.6), then uses (2.3.5) and 
(1.5.7). The  passage to a limit inside the summat ion  in (2.3.6) is easily 
justified due to the uniform boundedness  of the Gaussian polynomial  inside 
Iql << 1 - c and the rapid absolute convergence of the X series caused by the 
exponent  on q being quadrat ic  in X. 
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We must  distinguish the case in which the large-m limit is taken 
through even values of m - b f rom that  in which it is taken through odd 
values. In  the former  case a must  be an even integer (we have  the "even 
sub-SOS mode l"  discussed in Section 1); in the latter case a is an odd 
integer (the "odd  sub-SOS model") .  

Substituting (2.3.18) into (1.5.9) and  (1.5.13), using (1.5.5), we find that  
the local height probabi l i ty  Pa tends to a limit as m ~ ~ ,  being given by 

P~ = u~A(a ,d ; x2 ) /  ~,, udA(a' ,d;x 2) (2.3.21) 
l < a ' < r - I  

where 

d = l ( b + c - 1 ) ,  l < d < r - 2  (2.3.22) 

and  a, a '  are either both  even integers satisfying 1 < a, a '  -<< r - 1 [this is the 
"even"  case (1.5.3)], or are bo th  odd integers satisfying 1 < a, a '  ~< r - I. 

Allowing for these even and  odd  cases, and  noting that  the integer d 
takes r - 2 values, we see that  there are 2r  - 4 different functions Pa given 
by  (2.3.21). These correspond to the 2r  - 4 ground states (1.5.17). [] 

2.4. Regime I 

The results for this regime closely parallel those of regime II I .  Our  
work  is slightly more  compl ica ted  owing to the intricacy of the summands  
in the definit ion (1.5.23)-(1.5.26) of the relevant  polynomials  Ym(a, b, c; q). 

As before,  we examine admissible sequences of l 2 . . . . .  l m satisfying 
(1.5.14), and  split them into two classes according to whether  l m = b - 1 or 
l m = b + I. Writ ing the polynomials  Ym(a,b,c; q) simply as Ym(a,b,c) we 
find that  they are complete ly  def ined by  the following recurrences and 
initial values (m > 0, 1 < a < r): 

Ym(a,b,b + 1) = Ym_l(a,b - 1,b) + qmx(b+l)Ym_,(a,b + 1,b), 

1 ~< b~< r - 2  (2.4.1) 

Ym(a,b,b - 1) = Ym_,(a,b + 1,b) + qmLt-X(b-l)IYm_1(a,b -- 1,b), 

2 <  b <  r -  1 (2.4.2) 

Ym(a,O, 1) = Ym(a,r,r - 1) = 0 (2.4.3) 

Yo(a, b, b +_ 1) = 8a, b (2.4.4) 

where x(i) is the characterist ic funct ion of all numbers  < n: 

x ( i ) = l ,  if i~< n 

= O, if i > n (2.4.5) 
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and n is the integer par t  of r / 2 ,  i.e., 

n = ( r -  1)/2,  if r odd  

= r / 2 ,  if r even (2.4.6) 

We shall in fact find that we can solve (2.4.1)-(2.4.5) without using 
(2.4.6); so in this section and the next  we shall ignore (2.4.6) and allow n to 
be any integer in the interval 1 ~< n ~< r - 2. 

No te  that  x ( b +  1 ) =  1 - x ( b -  1 ) = 0  for b = n  and for b = n +  1. 
For  these values of b it follows that the r ight-hand sides of (2.4.1) and 
(2.4.2) are the same and hence 

Y m ( a , b , b  - 1) = Y m ( a , b , b  + 1), b = n , n  + 1 (2.4.7) 

We shall need the following two functions: 

a ( a , b , c )  = - 2a + �89 - c + 3) - r x ( c  ) (2.4.8) 

f l ( m ; a , b , c )  = �88 - c + 1)(m + b - a)  - �89 + � 8 9  - b)  + a - b 1 

(2.4.9) 

Lemma 2.4.1. For  a ,b  integers, 

a ( a , b , b  + 1) = a ( a , b -  1,b), 

f i ( m ; a , b , b  + t ) =  f l ( m -  1 ; a , b -  1,b), 

a ( a , b , b  - 1) = a ( a , b  + 1,b), 

f i ( m ; a , b , b  - 1) = B ( m  - 1 ; a , b  + 1,b), 

a ( a , b  - 1,b) = a ( a , b  + 1 , b ) , - r  

b ~ n (2.4.10) 

b ~ n (2.4.11) 

b v a n + 1 (2.4.12) 

b v a n + 1 (2.4.13) 

(2.4.14) 

f l ( m  - 1 ; a , b  - 1,b) = f l ( m  - 1 ;a ,b  + 1,b), + �89 - b - rn) + r e x ( b )  

(2.4.15) 

Also, for a an integer and b = n or n + 1, 

a ( a , b , b  - 1) = a ( a , b , b  + 1) 

f l ( m ; a , b , b  - 1) = f l ( m ; a , b , b  + 1) 

(2.4.16) 
(2.4.17) 

These lemmas follow directly f rom the definitions (2.4.8) and (2.4.9). 
The  following five lemmas contain the results necessary to provide 

express ions  for  the Y m ( a , b , c ) ;  they each conce rn  the po lynomia l  
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Gm(a,b,e),  defined by (m - a - b an even integer) 

Gin(a'b'c) = q2rX2+a(a'b'c)X+fl(m;a'b'c) �89 + a - b) - rX (2.4.18) 

Lemma 2.4.2. For  a and b integers, with b v ~ n, 

Gm(a,b ,b  + 1) = Gm_ffa, b - 1,b) + qmX(b+OGm_l(a,b + 1,b) (2.4.19) 

Proof. Using (2.4.10) and (2.4.11), 

G~(a ,b ,b  + 1 ) -  G ~ _ , ( a , b  - 1,b) 

=_ ~ q2r~Z+a(a,b-l,b)X+fl(m 1;a,b-l,b) 

• � 8 9  - � 8 9  

Using (2.2.2) to simplify the bracket ted difference of Gaussian polynomials,  
then using (2.4.14) and (2.4.15) and comparing the result with (2.4.18), we 
find that 

G,~(a,b,b + 1) - Gm_l(a ,b  - -  1,b) = qmx(b)Gm_l(a,b + 1,b) (2.4.21) 

Not ing  that x(b) = x(b + 1) for b v a n, we obtain (2.4.19). [] 

I -emma 2.4.3. For  a and b integers, with b :~ n + 1, 

Gm(a,b ,b  - 1) - Gm_l(a ,b  + 1,b) = qmi~-x(b- ' ) lGm_l(a,b  - 1,b) 

(2.4.22) 

Proof. The proof  parallels that of the preceding lemma. We use 
(2.4.12) and (2.4.13) to write the left-hand side of (2.4.22) as a sum 
involving the difference of two Gaussian polynomials then use (2.2.3) to 
express this difference as a single polynomial ,  and finally use (2.4.14), 
(2.4.15) and the fact that x(b) = x ( b -  1) for b v a n + 1. [] 

L e m m a 2 . 4 , 4 .  F o r b = n  and b = n +  1, 

Cm(a ,b ,b  - 1) = a m ( a , b , b  + l) 

This follows at once from (2.4.16) and (2.4.17). 

(2.4.23) 
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Lemma 2.4.5. For any integer a, 

Cm(a, 0, 1) = 1) 

Gm(a,r,r- 1)= Gm(-a ,r , r -  l) 

(2.4.24) 

(2.4.25) 

Proof. From (2.4.8), (2.4.9), and (2.4.18), 

x = - ~  �89 (m + a) - r)~ (2.4.26) 

Gm(a'r 'r-1)= x= ~'-~ qZr(X+'/Z)2--Za(~+'/Z)+('/2)ml ~(m + a)m-- r(X + �89 ] 

(2.4.27) 

Using (2.2.4), we observe that the right-hand side of (2.4.26) is unchanged 
by negating a and ~. Similarly, the right-hand side of (2.4.27) is unchanged 
by negating a and replacing ~ by - X -  1. The symmetries (2.4.24) and 
(2.4.25) immediately follow. [] 

Lemma 2.4.6. F o r  1 < [al, b < r, a n d  c = b _ 1, 

Go(a, b, c) = q --a/28a,b (2.4.28) 

Proof. From (2.2.1), when m = 0 the Gaussian polynomial in (2.4.18) 
vanishes unless a - b = 2r~, which can happen only when a - b and X = 0. 
Using (2.4.8) and (2.4.9), the summand in (2.4.18) then has value q-,/2. 
The result (2.4.28) follows. [] 

We are now in a position to state and establish our result for the 
function Ym(a, b, c). 

T h e o r e m  2.4.7. For m>/0 ,  1 ~ < a , b , c < r ,  c=b+_ 1, and b -  
a - m an even integer, 

Y,,(a,b,c) = q"/2IGm(a,b,c ) - Gm(-a,b,c)] (2.4.29) 

Proof. Since Ym(a, b, c) is completely defined by the recurrences and 
boundary conditions (2.4.1)-(2.4.4), we need only show that they are 
satisfied by (2.4.29). From Lemma 2.4.2, the recurrence relation (2.4.1) is 
satisfied (for b v ~ n) by Y,,(a,b,e)= Gm(a,b,c). Since the relation is un- 
changed by negating a, it is also satisfied by Ym(a,b,c)= Gm(-a,b,c ). 
Since it is linear and homogeneous, it is also satisfied by (2.4.29). 
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Similarly, Lemma 2.4.3 implies that Eq. (2.4.2) is satisfied by (2.4.29) 
for b v a n + 1, while Lemma 2.4.4 implies that Eq. (2.4.7) is satisfied for 
b = n , n +  l. 

Thus when b = n we have proved that (2.4.2) and (2.4.7) are satisfied. 
Since (2.4.7) was obtained by eliminating the right-hand sides of (2.4.1) and 
(2.4.2), it follows that (2.4.1) is also satisfied for b = n. Similarly, (2.4.2) is 
satisfied for b = n + 1. (In fact, Lemmas 2.4.2 and 2.4.3 are valid for b = n 
and b = n + 1, but their proofs are then different from those given above. 
We have introduced (2.4.7) to avoid the need to give the proofs for these 
special cases.) 

Thus the expression (2.4.29) for Ym(a,b,c) satisfies the recurrences 
(2.4.1) and (2.4.2) for all allowed values of b. From Lemmas 2.4.5 and 2.4.6 
it is easily seen that the boundary conditions (2.4.3) and (2.4.4) are also 
satisfied. This completes the proof of Theorem 2.4.7. �9 

The Limit m ~ .  We now want to take the limit m - ~ .  From 
(1.5.5) we see that t < 0 in regime I, so from (1.5.21) the argument q of our 
function Ym(a, b, c; q) is numerically less than 1: 

JqJ < 1 (2.4.30) 

We have essentially four cases to consider: c = b _+ 1, X(c) = 0, or 1. In 
order to avoid digressions during the proofs of the main results, we first 
prove the following lemma, using the definitions (2.2.1), (2.2.8), and (2.2.9). 

L e m m a  2 .4 .8 .  

i f m II 
m - - - ~ o o -  �89 + B �89 + B + b 

= (1 - qb)(q-e-b+, _ q ~ + , ) / [ (  1 _ q)(q)o~l (2.4.31) 

Proof. Set m = 2k and note that 

-k 2k 2k 

= q - ~  k + B + j  k + B + j + l  j=0 

b 1 (q)2k(q-~=J_ qe+j+l)  
= j=02 ~ l ( - q ) ~ - - ~ j  (2.4.32) 

using the definitions (2.2.1) and (2.2.8). Taking the limit k ~ ,  the 
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right-hand side becomes 

b - I  

~] (q -8 - j  _ qS+j+,)/(q)oo (2.4.33) 
j = 0  

Performing the j summation, we obtain (2.4.31), as desired. 
We shall save space in the subsequent developments if we define 

"lira . . . .  " to mean the limit restricted to those values of m of the same 
parity as a - b. 

T h e o r e m  2 .4 .9 .  Let a and b be integers, 1 < a < r, 1 < b < n. Then 

q,-b(1 _ qb) 
lira q-mym(a,b,b + 1) - 25 ( _  l)~tq(1/2)r#( tz+ l)-a. 

m oo ( 1  -  =_oo 

= q~-b( 1 -- qb)E(qa'qr)/[( 1 -- q)(q)oo] 

(2.4.34) 

where the sum is over all integers /~, and the function E(x, z) is given by 
(1.5.7). 

Proof. We begin by noting that for 1 < b < n, 

a ( a , b , b + l ) = - 2 a ,  B ( m ; a , b , b + l ) = � 8 9  (2.4.35) 

Using these expressions in (2.4.18) and (2.4.29), negating X in Gin(-a, b, 
b + 1) and using (2.2.4), we obtain 

Ym(a,b,b + 1) = i q 2rx2-2ax+�89 
~k= - - 0 0  

• � 8 9  - �89 
o ]) 

+ a + b ) - r X  

(2.4.36) 

Taking the limit m--~ oo, using (2.4.31), we obtain 

lim q-mym(a,b,b + 1) 
m--- )  oo 

= q l - b ( 1 - - q b )  i q2rXZ[q(r-2a)X--q a-(r+2a)x] (2.4.37) 
( 1 - q ) ( q ) ~  x = - ~  

Splitting the summation into two series, taking X =/~/2,  (t~ even) in the 
first, and taking 2l = (/~ + 1)/2 (/~ odd) in the second, we obtain the desired 
result (2.4.34). �9 
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T h e o r e m  2 . 4 . 1 0 .  L e t a  and b be integers, 1 < a < r , n  < b < r - 2 .  
Then 

lim Ym(a,b,b + 1) = [ (q)~1-1  ~ ( -  1)~q (1/2~r~(~+l~-a~ 
m ---> c ~  

f l =  - -  o o  

= E(qa, ar)/(q)o ~ (2.4.38) 

Proof. This case is simpler than the previous, in that we can use the 
elementary formula (2.2.6), rather than the more sophisticated Lemma 
2.4.8. 

S i n c e n <  b < r - 2 ,  wehave  

c~(a,b,b+ l ) = r - 2 a ,  ~(m;a,b,b+ l ) = - � 8 9  (2.4.39) 

From (2.4.18) and (2.4.29), letting m---> ~o and using (2.2.6), we obtain 

l irnYm(a,b,b+l)=[(q)~l  -I ~ q2rX2+rX(q--2aX--q 2ax+a) (2.4.40) 

Splitting this series into two, setting X = / x / 2  in the first, and ( - /~  - 1)/2 in 
the second, we obtain the desired result (2.4.38). 

Theorem 2.4.11. Let a and b be integers, 1 < a < r ,  2 <  b<~ n+ 1. 
Then 

E a r lim Ym(a,b,b- 1 ) =  (q ,q )/(q)~ (2.4.41) 
m ---> o ~  

P r o o f .  We merely note from (2.4.8) and (2.4.9) that 

a(a,b,b-  1)=  r -2a ,  B(m;a,b,b- 1 )=  - � 8 9  (2.4.42) 

These are the same expressions as those in (2.4.39), so the proof proceeds 
exactly as for Theorem 2.4.10. BI 

Theorem 2.4.12. Let a and b be integers, 1 < a < r , n + 2 <  b < r .  
Then 

lim q-mym(a,b,b - 1) = ql-r+b(1 - qr-~)E(qa, q~)/[ (1 - q)(q)~ 
m ---> c ~  

(2.4.43) 

Proof. In this case 

e~(a,b,b-1)=2r-2a,  tg(rn;a,b,b-1)=�89 (2.4.44) 

Using (2.4.18) and (2.4.29); negating 2~ in Gm(a,b,b - 1) and using (2.2.4), 
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while replacing X in G m ( - a , b , b  - 1) by ~t - 1, we find that 

Y ~ ( a , b , b -  1 )=  ~ q 2rx2 2(r-a)X+ l(m+b-a) 

• �89 - a + b) - rX 

- �89 + 2 r -  a - b) - rX (2.4.45) 

The right-hand side of this equation is the same as that of (2.4.36), but with 
a, b replaced by r - a, r - b. Making these replacements throughout Theo- 
rem 2.4.9, and using the identity 

E(z ,  x) = E ( x / z ,  x) (2.4.46) 

we at once obtain our desired result (2.4.43). �9 
The last four theorems give the limiting behavior of Ym(a,b,c) as m 

becomes large, for all integers a,b,c such that 1 < a,b,c < r - 1 ,  c = 
b +_ 1. Note that in every case the appropriate limit factors into the form 

E(qa, qr) • [function of b, c, q] (2.4.47) 

Substituting the appropriate limiting forms of Ym(a, b, c) into (1.5.21) 
and (1.5.25), it follows that Pa tends to a limit as m ~ o e ,  and that the 
function of b, c, q in (2.4.47) cancels out of the final expression for Pa, 
leaving 

a r / = voE(q- ,q ) .  2 o, r va,E(q ,q ), (2.4.48) 
l < a ' < r - - I  

where, as in regime III (and indeed in all regimes), a and a' are either both 
even integers, or are both odd. From (1.5.21) and (1.5.5), the argument q of 
Ym(a, b, c; q) is here related to the parameter x by 

q = x r-2 (2.4.49) 

We see that the limit (2.4.48) is indepedent of the values b, r of the 
boundary heights l,~+ l,/m+2. [It is even independent of the integer n, which 
as we mentioned after (2.4.6) can be regarded in this section as an 
independent integer.] This indicates that the model is disordered in regime 
I, and is consistent with the fact that there are then just the two ground 
states (1.5.29). 

2.5. Regime IV 

We now come to our first exploitation of the duality principle that was 
utilized for treating the Rogers-Ramanujan-type identities occurring in the 
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original hard hexagon model. (26) In this regime we see from (1.5.5) that 
t > 0, so from (1.5.21) the argument q of the polynomial Ym(a,b,c;q) is 
now greater than 1. Our interest therefore now centers on the polynomials 
reciprocal to those of regime I. 

Throughout this section we shall write ym(a, b, c) for Y,~(a, b, c) with q 
replaced by q-X, and g~(a,b,c) for Gm(a,b,c ) with q replaced by q - ' .  As 
before b -  a -  m is even and c = b +_ 1. 

It is convenient to define 

y(m;a ,b ,c )  = �88 - b) 2 -  B(m;a,b ,c )  (2.5.1) 

Lemma 2;5.1. 

qm~/4g~(a,b,c) = qV(m;a,b,c) ~ qr(r-2)~,2-[a(a,b,c) +ra-rb]X 

• � 8 9  (2.5.2) 

Proof. This follows immediately by applying (2.2.5) to (2.4.18). [] 
As in section 2.4, we shall denote by limm_~ the limit taken through 

those integers m of the same parity as a - b. 

Lemma 2.5.2. 

l i m  qm2/4ym(a,b,c ) 

= Q ( q ) - i  ~,, qr(r-2))~a+rbX la 

X {qV(m;a,b,c)-[,~(a,b,c)+ralX qV(m; a,b,c)-[,~(-a,b,c)-ralX} (2.5.3) 

Proof. This follows from applying (2.2.6) to (2.5.2), and using 
(2.4.29) with q replaced by q-~. [] 

The result (2.5.3) can be simplified by defining two further functions: 

�9 (b,c) = ~(c - b - 1) + X(C) (2.5.4) 

for 1 < b , c <  r -  l , c = b + -  1; then 

F(a,d;q) = ~ qr(r-2)X2+rdX+(a-d-l)2/4{q-(r-Z)aX q(r-a)aX+ad } 
)t = -- oo 

(2.5.5) 
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for 1 ~< a ~< r -  1 and  1 < d ~< r -  3. Using (1.5.7), we can write (2.5.5) as 

r(a ,  d; q) = q(~-d-1)2/4( E [  -- qr(r-- 2 + d ) - ( r -  2)~,q2r(r- 2) l 

--qadE[--qr(r-2+d)+(r-2)a, q2r(r-2)]) (2.5.6) 

The funct ion r (b ,  c) is an integer, with values - 1,0, 1. 

Lemma 2.5.3. 

limooq[m+l'(b'c)H2/4ym(a,b,c ) = r'[a,b + ~(b,c) - l ; q ] / Q ( q )  (2.5.7) 

Proof. This is just  a res ta tement  of L e m m a  2.5.2, as is most  easily 
verified by  explicitly considering the four  cases c -- b • 1, c ~< n or c > n. 

F r o m  (1.5.21), (1.5.25), (1.5.5), it follows that  Pa tends to a limit as 
m -~ oo, given by 

Po = v a r ( a , d ; x 2 ) /  ~ v d r ( a ' , &  x2) (2.5.8) 
l<a '< r - - I  

where 

d = b + z(b ,  c) - 1 (2.5.9) 

and  a, a '  are either bo th  even integers (the "even"  sub-SOS model),  or are 
both  odd integers (the " o d d "  sub-SOS model).  

We  note that  Pa depends  on d. F r o m  (2.5.5) and  (2.4.5), 

d = b ,  if b + l = c < ~ n  
= b - l ,  if b + l = c > n  

(2.5.10) 
= b - l ,  if b - l = c < ~ n  
= b - 2 ,  if b - l = c > n  

Since 1 -<< b, c ~< r - 1, we see that  d is an integer satisfying 

1 < d . <  r - 3  (2.5.11) 

Thus  d takes only r - 3 values. Allowing for the two possible sets of values 
of a (even or odd), it follows that  there are 2 ( r -  3) funct ions Pa, corre- 
sponding to the 2r  - 6 g round  states in regime IV. 

2.6. Regime II 

This is by  far the mos t  compl ica ted  of the regimes. F r o m  (1.5.5) we see 
that  t < 0, so f rom (1.5.9) the a rgumen t  q of the funct ion X,,(a,b,c;q) is 
greater  than 1. W e  are therefore interested in the polynomials  (in ql/2) that  
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are reciprocal to those of regime Ill, which we can define as 

Xm(a,b,c ) = xm(a,b,c;q) = q~(m+l)/4)(m(a,b,c;q-' ) (2.6.1) 

From (2.3.1) and (2.3.2) we see that the Xm(a,b,c ) satisfy the recur- 
rences (m > 0, 1 < a < r): 

xm(a,b,b + 1) = qm/2x m l(a,b + 1,b) + Xm_l(a,b - l ,b),  

1 < b < r - 2  (2.6.2) 

xm(a,b,b - 1) = qm/2xm_l(a,b - 1,b) + xm_l(a,b + 1,b), 

2~< b <  r -  1 (2.6.3) 

Lemma 2.6.1. For m >0 ,  1 < a , b , c < r ,  c = b _ +  1, m + a - b  an 
even integer 

x,,(a,b,c) = q("+a-b)/4(fm(a,b,c ) - f m ( - a , b , c ) }  (2.6.4) 

where 

fm(a'b'c)= x= ~- oo qrX2-aX+(b+l-c)(2rh+b-a)/4[ �89 (m + am- b) - r)t ] 

(2.6.5) 

Proof. This follows immediately on replacing q by q ~ in Theorem 
2.3.1 and using (2.6.1). �9 

Remarks on Procedure. Using (2.2.6), we can easily verify that 
fm(a,b,c) tends to a limit as m ~  oo. Unfortunately this limit is an even 
function of a (this follows by replacing X by -X,  or by - X -  1), so the 
expression (fm (a, b, c) - fm (-- a, b, c) } in (2.6.4) vanishes. 

This is still true even if we expand the Gaussian polynomial in (2.6.5) 
in increasing powers of qm/2 and keep a finite number of terms in the 
expansion, which is basically the method we employed in regime I. (We 
shall in fact find for large m that {f,,(a,b,c) - f , , ( - a , b , c ) }  is q raised to 
the power of a quadratic form in m, which accounts for the failure of this 
method.) 

We therefore need a more sophisticated procedure to determine the 
large-rn behavior of Xm(a,b,c), and it is this that makes regime II so 
difficult. We shall begin by showing that Xm(a, 2, 1) can be expressed in 
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terms of the function 

N 

o N ( q , w , s ; a ,  . . . . .  dR) = qJ +J-NJw J 
j=0 

• I-I I(di)j(W4)N-j] - '  (2.6.6) 
i=1  

where N, s are nonnegative integers and we are using the notation (2.2.8). 
We shall further show that one of d I . . . . .  d s is equal to the argument 

q, while another is equal to q/w. As is shown in Appendix B, the function 
PN is then proportional to a special case of a "well-poised q-hypergeometric 
series". (2s'29'32) Its behavior in the limit N ~  ~ is determined in Appendix 
B, using a standard theorem for such series (Theorem 4 of Ref. 29). 

Using this result (Theorem B5), we can evaluate Xm(a, 2, 1) in the limit 
of m large. We then obtain the limits of all the x m (a, b, c) by sequentially 
solving the recurrence relations (2.6.2), (2.6.3) for xm(a, 1,2), xm(a, 3,2), 
Xm(a, 2,3 ) . . . . .  X m ( a , r - 2 , r - 1 ) .  Finally we identify our results when 
r = 5 with those of the original hard hexagon model. (9'~~ 

Evaluation of Xm(a, 2, 1) in the Limit of m Large. We begin by 
expressing xm(a, 2, 1), for m + a an even integer, in terms of the function 
PN" We shall need the integers u, v, ~o, ~1, N, defined by 

� 8 9  1 = r X  0 + u ,  0 <  u < r  (2.6.7) 

� 8 9  0 < v K r  (2.6.8) 

N = Xo + X1 (2.6.9) 

Adding (2.6.7) and (2.6.8), we see that m, N, u + v are related by 

m + 2 = r N + u + v  (2.6.10) 

Theorem 2.6.2. 

where 

For 1 < a K r ,  m > 0 ,  m + a e v e n ,  

Xm(a,2, 1) = Lm(a)PN(qr, qV-U,r;q"+~,q u+2 . . . . .  q,+r) 

r X 2 + ( a - r ) X o + ( m + 2 - a ) / 4 ~  . 
q [,q)m+l Lm(a) = (q)u(q)~ 

(2.6.11) 

(2.6.12) 
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Proof. Using Lemma 2.6.1, negating )t i n f m ( - a , 2 ,  1,), 

Xm(a, 2 ,1)-= q(m+2-a)/4 ~ qra2+(r--a)X 

{[ ~ l • � 8 9  rX - q a - a  - � 8 9  

The summand in (2:6.13) is zero unless 

- � 8 9  1 ~< r ) t 4 � 8 9  1 

~ l} + a ) +  1 - r ) t  

(2.6.13) 

The definitions (2.6.7) and (2.6.8) are arranged so that - ) t  o is the smallest 
value of )t in the range (2.6.14), while )tl is the largest. Thus we can restrict 
the summation in (2.6.13) to 

- ) t  o -<< )t 4 )t~ (2.6.15) 

From (2.2.1) it is readily verified, for - 1 < k ~< m + 1, that 

2k - m 

I m 3 [ 1 ( l - q  )(q)~+a k 1 __ q2k-m m = 
- k + l   q) 7+7 

N o w  

(2.2.10) to obtain 
N 

Xm(a,2 , 1) = Lm(a ) s q rj2+(r-rN+u-v)j 1 - q,N->j+~- .  
(q ,+ l ,  , ~+ )tjtq l ) r N - - o  j=0 

Now we note that 
(q .+l) r /= (q .+l ;  qr)j( qU+ 2; q~)j . . . ( q , + r ;  q;)j 

Using this identity, (2.6.13) can be written as 

hi 

Xm(a, 2, 1) = q(,,+2 ~)/4 ~ qrX2+(r--~)X 
h =  - X o  

(1  - -  a-2rh q )(q)m+, 
x (q)o/2)~m+a)+l--rx(q)o/2)~,,--a)+~+,a (2.6.17) 

we replace h by j -  h o, and use (2.6.7)-(2.6.9), (2.6.12), and 

(2.6.18) 

(2.6.19) 

and similarly for (qV+ l)r~U_j). Comparing the summation in (2.6.18) with 
that in (2.6.6), we obtain the desired result (2.6.11). [] 

Now we want to let m -~ ~ .  We shall find it convenient, both here and 
in Appendix B, to adopt the convention that by 

lim g, = f,  (2.6.20a) 
n ~ o o  

(2.6.16) 

(2.6.14) 
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we mean  

lim (gJf~)  -- 1 (2.6.20b) 
n---> ~ 

We shall need the funct ion 

E(q~,q~)E(_ z,q)[ Q(qr) ]3 
#~a(z) = E(-z 'q~)E(-q~z 'qr)[  Q(q)l 2 (2.6.21) 

This is an analytic funct ion of z in the domain  0 < Izl < oo, so has a 
Lauren t  expansion:  

O~(z)= k n~,j zj (2.6.22) 
j ~  - - ~  

We shall find that  we can express the Xm(a,b,c) in terms of these coeffi- 
cients ~a,j" 

T h e o r e m  2.6.3.  F o r  1 < a < r, m + a even, 

2irnooXm(a,2, 1) = ( - 1 ) N q  rx2~176 
' I v - -  u , - -  N u 

(2.6.23) 

Proof. When  m ~ o o  we see f rom (2.6.7)-(2.6.10) that  u and  v 
remain  between 0 and  r -  1, while N o  co. Also, one of the a rguments  
qU+l . . . . .  qU+r of ON in Theo rem 2.6.2 must  be  equal  to qr, while another  
must  be  equal  to q'+"-~. These  two special a rguments  mus t  be  distinct, 
since if u = v then (2.6.7) and  (2.6.8) give a = r(X 1 - X0), i.e., a = 0 (modr ) ,  
which are not  al lowed values of a. 

We  can  therefore use Theo rem B5 to obta in  the limiting behavior  of ON 
in Theo rem 2.6.2. This gives that  xm(a, 2, 1) is the coefficient of z -N in the 
Lauren t  expansion of 

a r r 3 Lm( )(q ;q )~E(q~-",q ~) 
E(z, qr)E(q~-Uz, q ~) 

f i  E(q"+2-~'qr) 
r .  r u + i .  r v + i .  r 

~=' ( q , q  )~(q ,q )~(q ,q 1o~ 
(2.6.24) 

N o w  we use the triple p roduc t  fo rm (1.5.6) of E(z,x) to note that  

E(q"+iz-~,qr)/(qr;qr)o= (q"+iZ--~;qr)~(qr--"--iz;qr)~ (2.6.25) 

Using the identity (2.6.19), it follows that  the p roduc t  over  i in (2.6.24) is 
s imply 

(q,+~z-~)oo(q-,z)~/[(q,+l, ~ v+~ )oo(q )o~] (2.6.26) 
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Substituting this, and using the definition (2.6.12) of L,~(a), with (q)~+1 
replaced by (q)~, the function (2.6.24) becomes 

r~Z+(a--r))to+(m+2-a)/4 r. r 3 E v - u  q (q ,q  )~  (q , q r ) E ( q - " z , q )  
E ( z ,  q ' ) E ( q  € q r ) ( q ) ~  (2.6.27) 

From (1.5.6) we can readily verify that for all integers u, 

E ( q "z, q) = ( - z )" q-(1/2)"("+ ')E ( z, q) (2.6.28) 

so from (2.6.21) and (2.2.9) we see that (2.6.27) is equal to 

qrXg+(a-r)Xo+(m+2-a)/4-(1/2)u(u+ 1 ) ( _  Z)U09v_u(_ Z) (2.6.29) 

Recalling that Xm(a, 2, 1) is the coefficient of z -N  in the Laurent expansion 
of this function (2.6.29), we obtain the desired result (2.6.23). �9 

The form for Xm(a, 2, 1) given by the preceding theorem involves the 
integers X o , v , u , N  defined by (2.6.7)-(2.6.9). It turns out that we can 
eliminate them in favor of our original variables a and m. To do this we 
need certain recurrence and symmetry properties of q~,(z) and ~a.j. 

Lemma 2.6.4. For all integers a, and nonzero complex numbers 

09, + ,( z ) = - z09 , (  z ) (2.6.30) 

dpa(qrz) = z 2 - ~ q , - (  l/2)r(r--l)(~a(Z ) (2.6.3 1) 

09 a( q - az -1)  = z ] - aq( l / 2)a(1- a) 09 a( Z ) (2.6.32) 

Proof. These three properties all follow directly from the definition 
(2.6.21), the recurrence formula (2.6.28), and the identity [readily verifiable 
from (1.5.6)]: 

E ( z - ' ,  q) = - z - ' E ( z ,  q) �9 (2.6.33) 

Lemma 2.6.5. For all integers a and j, 

~ a  + r,j = - -  ~ a , j  - 1 

17a,J + r -  2 = q r j -a+(  l /2)r(r-1)~la,j 

lJa,a_ l_ j = q(1/2)a(a-  2j-1)v] "#a,j 

(2.6.34) 

(2.6.35) 

(2.6.36) 

Proof. Substituting the series form (2.6.22) of 09a(z) into Lemma 
2.6.4 and equating coefficients in the resulting expansions, we obtain 
(2.6.34)-(2.6.36). Repeated application of (2.6.34) and (2.6.35) yields the 
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corollaries: 

~a + rk,j = ( -  1) l~r~a,j- k 

T ] a , j + ( r _ 2 ) k  = q k [ r j - a + ( l / 2 ) r + ( l / 2 ) r ( r  2)k], n 
"la,j 

for all integers a, j, k. �9 

T h e o r e m  2.6.6.  For 1 < a < r , m + a e v e n ,  

lira Xm(a, 2, i) = "--(m+2-a)2/8~/ "1 a , (1 /2 ) (  a -  m--  2) 

(2.6.37) 

(2.6.38) 

(2.6.39) 

Proof. From (2.6.7) and (2.6.8), 

v - u = a + r()t o - )tl) (2.6.40) 

F rom  (2.6.37), with k = )to - )tl, it follows that 

( -  1 ) % _ ,  _N_~ = ( -  1)U+~~ _N_U_Xo+X ' 

= ~/~,-,- 2x0 (2.6.41) 

after using (2.6.9). 
Now we use (2.6.38), with j = - u - r)t 0 and k = )t0, to obtain 

~a,  u - 2 X  o ~--- q X ~ 1 7 6  (2.6.42) 

so from this and (2.6.41), Theorem 2.6.3 becomes 

lim Xm(a, 2, 1) = q - ( l / 2 ) ( u + r x ~ 1 7 6  2 - a ) / 4 ~  (2.6.43) 
m-+ e~ - I la' - u - rXo 

Note  that u,)t o enter this expression only in the combinat ion u + r)t0, 
which from (2.6.7) is �89 - a + 2). The result (2.6.39) follows. �9 

Evaluation of Xm(a , b, c) in the Limit of m Large. N o w  that we have 
Xm(a, 2, 1), we can use the recurrence relations (2.6.2) and (2.6.3) to obtain 
Xm(a, b, c) in general. We first need a lemma concerning the large-j behav- 
ior of ~/~,j. 

Lemma 2.6.7. 

Then 

For  all integers a, j ,  define ~.,j by 

r lad  ----. q [ (  1 / 2 ) r j ( j +  1) - a j ] / ( r - 2 ) ~ a ,  j (2.6.44) 

~ , j+ r -2  = ~ j  (2.6.45) 

Proof. This follows immediately from (2.6.35). Since ~aj is periodic 
in j ,  it is bounded,  so this lemma gives the large-j behavior  of ~a,j. 
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Theorem 2.6.8. For 1 < a < r , m + a - b e v e n ,  

lim Xm(a,b,b + 1) q -("+~ 
r n - - ~ o  " = g ~ a ' ( 1 / 2 ) ( m + a - b )  ' 

lira Xm(a,b,b- 1) q -~m-~+b)~/8 
m - - - ~  " = 7 ~ a ' ( l / 2 ) ( a - - m - b )  ' 

Andrews et ai. 

l < b < r - 2  

(2.6.46a) 

2 < b < r - 1  

(2.6.46b) 

Proof. F r o m  (2.3.3) and  (2.6.1), Xm(a,O, 1) in the recurrence relation 
(2.6.2) is to be interpreted as zero. Setting b = 1 therein, we therefore obta in  

Xm(a, 1,2) = x m_ , (a,  2, 1) (2.6.47) 

Using Theorem 2.6.6 and  Eq. (2.6.36), we can  at once verify that  (2.6.46a) 
is satisfied for b = 1, and  (2.6.46b) is satisfied for b = 2. 

We  now proceed by  induction.  Suppose that  (2.6.46a) is satisfied for 
1 < b < b 0 -  1, and  (2.6.46b) is satisfied for 2 < b < b 0, where 2 < b o 
~< r - 2. (We have  just  shown this is so for b 0 = 2.) Setting b -- b 0 in the 
recurrence relation (2.6.3) and  rearranging,  we obta in  

Xm_l(a, bo + 1,b0) = xm(a, bo,b o - 1) - qm/2xm_,(a,b o - 1,bo) (2.6.48) 

In  the limit m ~ ~ ,  bo th  terms on the r ight-hand side are known to be 
given by  (2.6.46). Thus  their ratio is, using L e m m a  2.6.7 and  temporar i ly  
dropping the suffix on b 0, 

qm/2x m l ( a , b -  1,b) q(l/2)m(b-a+l~ 
-- ' t a , ( l / 2 ) ( m + a - b )  = 

X m ( a , b , b -  l)  "Oa , (1 /2 ) (a -b -m)  

qm(r- l -b) / ( r -  2)~ 
' l a , ( 1 / 2 ) ( m + a - b )  

= (2.6.49) 
~ a , ( l / 2 ) ( a - b - m )  

Since ~aj is bounded  and  b < r - 1, this ratio tends to zero as rn ~ ~ .  Thus  
we can ignore the last term in (2.6.48)~ Using (2.6.46b) to evaluate  xm(a, b o, 
b o - 1), it follows at once that  Xm_t(a,b o + 1,bo) is also given, for m large, 
by  (2.6.46b). Thus  (2.6.46b) is true for b = b o + 1. 

The  second step of the inductive proof  is to set b = b o in (2.6.2). Both 
terms on the r ight-hand side are now known to be  given by  (2.6.46), so 
( temporar i ly  dropping the suffix on b0) 

qm/2xm_l(a,b + 1,b) n(1/2)m(a-b+l)~ 
"1 'la,( 1 / 2 ) ( a  - r n  - b )  

X m _ l ( a , b -  1,b) ~a,([/2)(m+a-b) 

' ta,(1/2)(a m--b) 
= (2.6.50) 

'0~, (1 /2) (m + a -  b) 
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Since b > 1, this ratio tends to zero as m ~ oo, so we can ignore the first 
term on the right-hand side of (2.6.2). Using (2.6.46a) to evaluate the 
second term, we at once find that Xm(a, bo, b o + 1) on the left-hand side is 
also given by (2.6.46a). Thus (2.6.46a) is true for b -- b 0. 

This completes the inductive loop. Taking b o-- 2 , 3 , . . . ,  r -  2, we 
establish the results (2.6.46). �9 

Throughout the rest of this section, let 

j = - b  + (c - b)m (2.6.51) 

Since c = b +_ 1, j  is either m - b or - m  - b. It is an integer, and has the 
same parity as a. 

We shall use the function 2 m (a, b, c), defined in terms of x m (a, b, c) by 

xm(a, b, c) = qAj+r)/(4r--8)2m(a , b, c) (2.6.52) 

This function Xm contains fractional powers of q, but its large-m behavior is 
simpler to discuss than that of x m itself, as is evident from the following 
theorem. 

T h e o r e m  2.6.9.  F o r  1 < a < b,  c < r, c = b _ 1, m + a - b even, 

lim 2m(a, b, c) = . a ( r - - a ) / ( 4 r - - 8 ) , ~  (2.6.53) t'l ' la , (  1/2) (a +j) m~o~ 

Proof. This is just a restatement of Theorem 2.6.8, using the defini- 
tions (2.6.44), (2.6.51), (2.6.52). �9 

Note that m , b , c  enter the right-hand side of (2.6.53) only via the 
integer j ,  and that a + j  must be even. Further, from (2.6.45), ~a,i is a 
periodic function of i, of period r -  2. Thus as m is increased (in incre- 
ments of two), ~m(a, b, c) sequentially takes r - 2 different values, returning 
after r - 2 increments to its original value. Varying b and c merely changes 
the starting point of this cycle. 

From (1.5.5.), (1.5.9), (1.5.13), (2.6.1), and (2.6.52), the local height 
probabilities are given by 

Pa = ua-~m(a ,b , c ;q ) /  E * ~ " ua.x,,,(a ,b ,c ,  q) (2.6.54) 
l < a ' < r - - I  

where a,a'  are either confined to the set of even integers (the "even" 
sub-SOS model), or to the set of odd integers (the "odd" model). The 
argument q is related to the parameter x of (1.5.8) (which is not to be 
confused with the functions Xm(a , b, c; q) and 2re(a, b, c; q) by 

q = x r-2 (2.6.55) 

For m large and a fixed, there are just r - 2  different values of 
2m(a,b,c; q) that can be obtained by varying m, b, and c, i.e., by varying 
the boundary conditions on the lattice. From (2.6.54) it follows that for a 
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given parity of a, there are just r -  2 different functions P~ that can be 
formed by varying the boundary conditions. Altogether this gives us 2r - 4 
functions, corresponding to the 2r - 4 ground states (1.5.19). 

The  C a se  r = 5. As was shown in Sections 1.3 and 1.4, when r = 5 
we regain the origin hard hexagon model. Thus the results (2.6.46)-(2.6.55) 
of this section should then reduce to those for regime II of the hard 
hexagon model. (93~ From their definitions, the quantities Fk(0), Fk(1 ) in 
Refs. 9, 10, and 26 are related to our functions 2m(a, b, c) by 

Fk(O ) = q(l/2)(~ "[- 2o, b,b + 1), 

= q(l/2)(~ + 2o, b,b - 1), 

l < b < 3  

2 < b < 4  

(2.6.56) 

where k = 1,2, 3, o = 0, 1, and the right-hand side is to be evaluated in the 
limit i ~ ~ .  

We can take the limit i ~ m by using Theorem 2.6.9, which gives 

F~(o) = q[2O-(2-k)(3-k)l/6~Z+2 . . . .  ;+3i 

= q[2~ 1 (2.6.57) 

We see that both expressions in (2.6.57) are independent of b, so it is 
irrelevant what value we took in (2.6.56). Also, from (2.6.36) and (2.6.44), 
~,,a-l-j  = ~a,j for all integers a, j .  It follows that the two expressions in 
(2.6.57), and hence in (2.6.56), are equivalent. 

The integer i still appears in (2.6.57), but from the periodicity relation 
(2.6.45) it plays no role, the expressions in (2.6.57) being independent of i. 
We can therefore now set i = 0 and use  the first expression. Then from 
(2.6.44) we obtain 

F~(o) = q,k-,+k-k%Z+Zo,o_k (2.6.58) 

f o r k =  1,2,3 and o = 0,1. 
If we now use the definitions (2.6.21), (2.6.22) of ~/aj, the resulting 

expressions for the Fk(o ) are not of the same form as those obtained 
originally. (9'1~ To establish the equivalence we need the following theorem. 
As throughout this paper, E(z, x) is the elliptic theta function defined by 
(1.5.6), or equivalently (1.5.7). 

T h e o r e m  2.6.10. For [ql < 1, and all nonzero complex numbers z, w, 

E(z, q)E(w, q)E(zw, q)e(w/z, q) 

= [Q(q)]2{E(w3, q3)[ E(qz3, q 3) - zE(qz-3,  q3)] 

- (w/z)E(z3 ,  q3)[ E(qw3, q 3) - wE(qw-3, q 3)]} (2.6.59) 



Eight-Vertex SOS Model 233 

Proof. Like all elementary theta function identities this can be 
proved using Liouville's theorem (Section 15.3 of Ref. 10). Regard q, w as 
constants and z as a variable. Let 

right-hand side of (2.6.59) 
f(z) = left-hand side of (2.6.59) (2.6.60) 

Then by using (2.6.28) it is readily verified that f(z) has the periodicity 
property f(qz) = f(z). Since E(z, q) is analytic for 0 < Izl < ~ ,  the only 
possible singularities of f(z) in this domain are simple poles, occurring 
when the left-hand side of (2.6.59) vanishes, in particular when z = 1, w, 
or w - l .  However, using the obvious identities E(1 ,q )=  0, E(w-3,q) = 
-w-3E(w3,q), we can immediately verify that the right-hand side of 
(2.6.59) then also vanishes, so the poles have zero residue and f(z) is in fact 
analytic at z = 1,w,w -1. Since f(qz)=f(z),  it is therefore analytic at 
z = q",q"w,q"w -1 for all integers n, which exhausts all the zeros of the 
left-hand side of (2.6.59). 

It follows that f(z) is analytic in 0 < Izl < so is bounded in 
q < Izl < 1. Again using the periodicity property f(qz)= f(z), the function 
f(z) must be bounded everywhere. This means that f(z) must be analytic at 
z = 0 and ~ ,  so by Liouville's theorem it must be a constant. 

From the infinite product expansions (1.5.6) and (2.2.7), it is readily 
established that if 0~ = e 2~ri/3, then (for all complex numbers z) 

E(z,q)E(~oz, q)E(~o-lz, q) = [ O(q)]3E(z3, q3)/O(q3) (2.6.61) 

E(q, q3) = Q(q) (2.6.62) 

E(~0,q 3) = (1 - oJ)O(q 3) (2.6.63) 

Setting z = ~ in (2.6.59) and (2.6.60), and using these identities, it 
follows that 

f (~)  = 1 (2.6.64) 

Since f(z) is a constant, this implies that f ( z )= 1, which establishes the 
theorem. �9 

Lemma 2.6.11. For ]q[ < 1 and all complex numbers z, 

E(z,q) = Q(q) ~I [ E(qi-lz, qr)/ Q(qr) ] 
i = 1  

(2.6.65) 

Proof. Like (2.6.19), this follows directly from the infinite product 
expansions (1.5.6) and (2.2.7). �9 
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We can use the preceding lemma and theorem to write rba(Z ) in a form 
from which the original hard hexagon results can be regained. First we 
define 

~,~ = q('/2)(a-l>(3"-4)[ E(q3a+5, qlS) -- qaE(qS-3a, q ' 5 ) ] /Q(q )  (2.6.66) 

~ = q(1/2)(o- ,)(3a-4)E(q3a ' q15)/O(q) (2.6.67) 

Theorem 2 . 6 . 1 2 .  For r = 5, 1 < a ~< 4 and all complex numbers z, 

@a(Z) = ~ a z l - a E ( -  q6az-- 3, qlS) 

+ af ' z-avL q aE'[- q6a+ SZ--3'q 15) + q 3Oz - IE(  - qS-6az3'qlS) l 

(2.6.68) 

Proof. Negate z in Lemma 2.6.11 and substitute the resulting expres- 
sion for E ( - z ,  q) into (2.6.21). This gives 

E(qa, q S ) E ( -  q'z, q S ) E ( -  qJz, q ~ ) E ( -  qkz, q~) 
= (2.6.69) d) a(z) Q(q) Q(qS) 2 

where i, j ,  k are the integers 1,2, 3, 4 excluding a. Using the quasi-periodic 
property (2.6.68) of the E function, together with the simple identity 
E(z, x) = E ( x / z ,  x), the result (2.6.69) can be written as 

e~a( z ) = q( I /2)(a- l)( 3a-a)z ' -~E ( qa, qS)E ( - q3az - ' qS)E ( - q2az - ', qS) 

X E ( - q ~ z - ' , q S ) / [  Q(q)Q(qS)  2 ] (2.6.70) 

This expression contains a product of four E functions, which is the same 
as that on the left-hand side of Theorem 2.6.10, provided that z, w, q in that 
theorem are replaced by qa, _ qZa z -  1, qS. We can therefore apply Theorem 
2.6.10 to (2.6.70). Doing so, we obtain the desired result (2.6.68). [] 

From (2.6.22) and (1.5.7), an immediate corollary of this theorem is 
that, for 1 < a -<< 4 and all integers i, 

~a,3i+l a = ~aq 15i(i+t)/2-6ai 

Tla,3i-a = ~ q l 5 i ( i +  l) / 2 - (6a+ 5)i+a (2.6.71) 

"qa,3i-a-1 ~- ~ q 1 5 i ( i -  l) / 2 - ( 6 a - 5 ) i +  3a 

]These expressions satisfy the periodicity and symmetry relations (2.6.34)- 
(2.6.36).] 
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Using these expressions (2.6.7t) for ~/~,j, from (2.6.58) it follows that 

FI(O ) = q - l ( z  = I E ( q 4 , q  15) + q E ( q , q ~ 5 )  ] /  Q ( q )  

FI(1 ) = q-9~4 = [ _ q E ( q 2 ,  qlS) + E ( q T ,  q l S ) ] / Q ( q )  
(2.6.72) 

F2(0 ) = F3(0 ) = q-~'6 = E ( q 6 , q ~ 5 ) / Q ( q )  

F2(1 ) = F3(1 ) = q - ~ ' ~  = q E ( q l 2 , q l S ) / Q ( q )  

which are the results originally obtained for the hard hexagon model 
[Eq. 64 of Ref. 9, (14.5.22) of Ref. 10, Theorems 1-6 of Ref. 26]. 

3. NORMALIZATION OF THE PROBABILITIES P~ 

3.1. The Normalization Factor M 

The probabilities P~ are given, for the four regimes, by (2.3.21), 
(2.4.48), (2.5.8), and (2.6.54). Each of these equations is of the form 

Pa = t x J  M (3.1.1) 

where 

m ~-- ~ *  ~s (3.1.2) 
l<~a<r 

the * indicating that the sum is either confined to the set of even integers or 
to the set of odd integers. It is sometimes convenient to write/~ in the form 

~a = V• + /s (3.1.3) 

Using (2.3.19), (2.5.6), (2.6.53), and the definitions (1.5.5), (1.5.10), (1.5.22) 
of u~, v~, we find that for the four regimes,/,~ or/~' is given by 

I t~a = x(1/2)a(a+l-r)E(  xa,  --xr/2)E[x(r-2)a, xr(r 2)] (3.1.4a) 

II ~a = E ( x ~ , x r ) ~ , ( l / Z ~ ( ~ + j ~  (3.1.4b) 

Ill  ~ = x(1/2)a(a-l-2d)E(xa, x r ) E [ - x  2(r-a)(r I)+2rd, x4r(r-1)] 

(3.1.4c) 

IV ~s = X(1/2)a(a--I 2d)E(xa, xr/2)E[--x2(r-a)(r-2)+2rd, x4r(r-2)] 

(3.1.4d) 

We have omitted factors that are independent of a, and hence cancel out of 
(3.1.1). The function ~,i is defined by (2.6.21), (2.6.22), and (2.6.44) with 
q = x r-2. It satisfies the relations 

~a,i = ~a,i + r-- 2 = x -- 2a -- r~a + 2r,i + r ~--" -- x -- a~ -- a,i -- a (3.1.5) 

for all integers a, i. 
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In (3.1.4), a, j ,  d are integers satisfying the restrictions 

a + j = even, 1 ~< d ~< dma x (3.1.6) 

where drnax  = r - 2, r - 3 for regimes III, IV, respectively. The integers j 
and d are to be regarded as fixed (i.e., independent of a): they determine 
the phase of the system in the ordered regimes. 

The function/x a is needed only for 1 < a < r, and/z~ for 1 < [a I < r, 
but it can be convenient to extend the definitions (3.1.3) and (3.1.4) to all 
integers a. Using (2.6.28), (2.6.33), and (3.1.5), we can then verify that 

/ * - - a  ~" /*a = / * a + 2 r ,  /*0 = /*___r = 0 (3.1.7) 

Thus (3.1.2) can be put into the form 

1 E *  /*~ (3.1.8) 
M = -~ --r<a<r 

It is clear from (3.1.1) and (3.1.2) that M is a normalization factor 
whose presence in (3.1.1) ensures that the local height probabilities satisfy 
the condition 

E * Pa ~--- 1 (3.1.9) 
l<a<r  

This means that M plays a similar role to the partition function: in fact if 
we trace back its origin we see that M is proportional to S and T in (1.5.13) 
and (1.5.25), to the denominators in (A26) and (A1), and hence to the 
partition function (1.2.1) of the eight-vertex SOS model. 

We also see from (3.1.7) and (3.1.8) that M has a simple mathematical 
significance: it is the sum of ! / ,  2 ~ over all equal-parity values of a within a 
complete period 2r. For those cases (at present regimes III and IV) where 
/," is defined, it is also true that 

/*a' ' ' ' (3 10) = / * a + 2 r ,  /*0 = /*+_r "~ 0 . 1 .  

so we can, using (3.1.3), write (3.1.8) as 

M =  < (3.1.11) 
--  r .<< a < r 

3.2. Theta-Funct ion "Sums-of -Products"  Ident i t ies 

The  Case  r = 5. For the original hard hexagon model, which is 
when r = 5, it has been noted that the normalization factor M always turns 
out to be a simple product of theta functions. (There are nine different 
possibilities, depending on the regime and the phase.) Further, this simplifi- 
cation is always a corollary of one or more of the 40 "sums-of-products" 
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identities (34) listed by Ramanu jan  and subsequently proved by Rogers, (35~ 
Darling, (36) Mordell ,  (37~ and Watson.  (38) These identities involve the func- 
tion Q(x) defined by  (2.2.7), as well as the funct ion P(x) ,G(x ) ,H(x )  
defined by  

P(x)  = I-I (1 - x 2n- ' )  (3.2.1) 
n=l 

G(x) = r I  [ ( 1 -  x5n--4)(1- x5n--1)] -1 (3.2.2) 
n=l 

H ( x ) =  f i  [ ( 1 -  x 5 " - 3 ) ( 1 -  xSn-2)] - '  (3.2.3) 
n=l 

For  instance, consider regime I with r = 5 and a even. Then  from 
(3.1.2) and (3.1.4a), setting x 1 = - x 1/2 

M = ~2 4- ~4 
= X - 2E(x2, - x2"5)E(x 6, x 15) "k- E(x  4, - x2"5)E(x 12, x'5) 

= x 1 4 Q ( x 1 )  Q(X6){ H ( x 1 ) G ( x  6) -- x ,G(x , )H(x6)}  (3.2.4) 

However,  Eq. 8 in Birch's list (34~ of Ramanujan ' s  identities is 

G(x6)H(x)  - x G ( x ) n ( x  6) = P(x ) / /P (x  3) (3.2.5) 

so we deduce at once that  

M = x;4Q(x l )  Q ( x 6 ) e ( x , ) / e ( x  3) 

= Xl4E(x1 ,x2)E( - x 3 ,x l  2) (3.2.6) 

The other  r = 5 cases involve Eqs. 2, 5, 6, and 23 of Birch's (34) list, and 
are given in Refs. 9, 10, and 20. 

Do these identities generalize to arbi trary values of r, so that M is 
always a simple product  of theta functions? It turns out  that the answer is 
yes, as is shown in the remainder  of this section. As usual, regime II has to 
be treated separately; for regimes I, III, and IV there is one general identity 
(Theorem 3.2.1) that covers all cases. 

Regimes  I, III, and  IV, The  general identity that we shall need is the 
following. 

Theorem 3.2.1.  Let x, y be real numbers  such that [x] < 1 and 

y m / 2  = __ ~X r, ~E = + 1 (3.2.7) 

where m,r are positive integers and 1 < m < 2r; then for all complex 
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numbers z 

E *  x(1/2)a(a-l)zaE( Xa' Y ) E I  s x2r(2r--m)l 
--r<a<r 

E(z, xle(-z ',y/x)} (3.2.8) 
where the upper (plus) choice of the _+ sign in (3.2.8) is to be made if the 
summation is restricted to even values of a; the lower (minus) sign applies 
if the sum is restricted to odd values. 

Proof. First consider the quantity 

J =  E *  o(a)  (3.2.9) - - ~ < a < ~  
where 

o(a) = x ( l/2)a(a- 1)2. aE( x a, y)  (3.2.10) 

From (3.2.7) and the quasiperiodicity property (2.6.28) of E(z, q), we can 
verify that (for all integers k) 

o(a + 2kr) = x2kra+2k2r2-krz2kr(- xc t ) -kmy -km(krn- 1)/2o(a) 

= ( _ ,m-l)kx(2r-m)k(a+kr)z2kro(a) (3.2.11) 

For any integer a, there are unique integers a0, k such that 

a = ao + 2kr, - r < ao < r (3.2.12) 

and a 0 has the same parity as a. Thus (3.2.9) can be written 

J =  ~ *  ~ o ( % +  2kr) (3.2.13) 
- r~ao<rk= --oo 

Dropping the suffix on a 0 and substituting the expression (3.2.11) for 
o(a + 2kr) into (Y2.13), the k summation can be performed by using 
(1.5.7). This gives 

J =  ~ *  o(a)E[f, rn-lx(2r-m)(r+a)z2r, x2r(2r-m) 1 (3.2.14) 
--r<<.a<r 

Using (3.2.10) and noting that o ( - r ) =  0, we see that J is equal to the 
left-hand side of (3.2.8). 

Now we go back to the definition (3.2.9)-(3.2.10) of J. Let Je and J0 be 
the values of J when the summation in (3.2.9) is restricted, respectively, to 
even and odd values of a. Then 

Je -I- "rJ 0 = ~ "tOo(a) (3.2.15) 

where ~- = _ 1 and the summation is now over all integers a. Using (3.2.10) 
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and (1.5.7), it follows that  

J. + Jo = 
a =  - c ~  k =  - o c  

= ~ ( - - ' r ) k z - k ( y l X ) ( I / 2 ) k ( k - l ) ~  TJzJx ̀ l / 2 ) j ( j - I )  (3.2.16) 
k= - ~  j =  - ~  

where we have  in terchanged the a, k summat ions  and  set a = j -  k. Since 
the s u m m a n d  in (3.2.16) factors into a funct ion of k times a funct ion of j ,  
the sum is a p roduc t  of two E functions.  Using (1.5.7), we obta in  

Je 4" "l"J o = E ( -  "1"2, x ) E ( ' r z -  1, y / x )  (3.2.17) 

Tak ing  sums and differences of this equat ion for ~- = + 1 and  z = - 1, we 
can evaluate  Je and  J0 '  R e m e m b e r i n g  that  the lef t -hand side of (3.2.8) is 
either Je or Jo, we obta in  (3.2.8), as desired. I I  

Simple special cases of Theo rem 3.2.1 occur  when 

z = x '  or z = - ( y / x ) '  (3.2.18) 

where I is an integer. The  last term in (3.2.8) then vanishes,  so the 
r ight -hand side reduces to the single p roduc t  

l E (  - z, x ) E ( z  - l, y / x )  (3.2.19) 

and  is independent  of whether  the summat ion  is restricted to even or to odd 
values of a. 

The  par t icular  identities that  we shall need are all such simple special 
cases of T h e o r e m  3.2.1. We  shall also need the symmet ry  and  periodici ty 
propert ies  (2.4.46) and  (2.6.28) of E(z ,  q), as well as the e lementary  identi- 
ties (true for  all integers d and  complex  numbers  z ,q  with Iq] < l) 

E(z ,  q) = E(  - qz 2, q4) _ z E (  - qz -2, q4) (3.2.20) 

E ( -  1, q) = 2 E ( -  q, q") (3.2.21) 

E(  - q d, q) = 2q -(  l/2)d(a+ )>E( -  q, q4) (3.2.22) 

[The first follows f rom (1.5.7) by  splitting the sum therein into two parts,  
one with n even and  the other with n odd;  the second is ob ta ined  f rom the 
first by  taking z = -  l; the third follows f rom the second and f rom 
(2.6.28).] 

Tak ing  m = 2, e = - 1, y = x r, and  z = x - a (d an integer) in Theorem 
3.2.1, using (2.4.46) and  (3.2.22), we obta in  

E * x (  I/2)a(a-- I - 2 d ) E ( x  a X r ) E [  - x 2(r- l)(r--  a) + 2rd x4r(r--I)I 
- - r<a<r  

= X - (  1/2)d(d+ 1)g ( __ X, x 4 ) e ( x  d, X r -  1) (3.2.23) 
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Similarly, taking m = 4, e = - 1 ,y = - x "/2, and z = x - a  (d an integer), we 
obtain 

E *  x(l/2) a(a-I-2d)E(Xa, __ x r /2) E [  -- x2 (r -  2)(r-a) + 2rd, x 4r(r- 2) 3 
- r < a < r  

= x -(  1/2)a(a+ l~E( _ x, x4)E[ x d, _ x ( r - 2 ) / 2 1  (3.2.24) 

Identities (3.2.32) and (3.2.24) are relevant to regimes I I I  and IV, 
respectively. For  regime I we take m = 4 ,  e = - l ,  y = - x  ~/2, and  
z = w-( ' -2) /2:  this ensures that z = - x / y ,  so the second possibility in 
(3.2.18) is satisfied (for r even, so is the first). We  then group the ( a , -  a) 
terms together in (3.2.8) and use (2.6.33), (3.2.20), (2.6.28), and (3.2.21) to 
obtain 

E :~ x(  l /2 )a(a+l-r )g(  Xa' -- x r /2 )E[  X (r-2)a, X r(r-- 2) 1 
l<~a<r 

= x ( 2 r - r 2 - u ) / 8 E ( -  X ~/2, x ) E ( x  (r-2)/2,  x 2r-4) (3.2.25) 

where 

v = 0, if r is even 

= 1, if r is odd  (3.2.26) 

[For r even, (3.2.25) is a special case of (3.2.24), with d = (r - 2)/2.]  

R e g i m e  II. For  regime II, the identity we want  to establish is 

~ *  E ( x  a, x')~,,.(,/2)(~+j ) = Q(q)  (3.2.27) 
l < a < r  

for all integers j ,  the sum being over integers a with the same parity as j .  
The function ~,i  is defined by (2.6.21), (2.6.22), and  (2.6.44) with q = x "-2. 
F r o m  (3.1.2) and (3.1.4b), M is equal to the left-hand side of (3.2.27), so it 
follows that 

M = Q(q) (3.2.28) 

One way to prove (3.2.27) is to first establish the following theorem. 

Theorem 3.2.2. Let ~ ( z )  be defined by (2.6.21), with q = x "-2. 
Then for all complex numbers  z, 

2" 
l<a<r 

= x-r~/Sz(~/2)"-~O(q)E(-x(~/2) '~z ,x  ~) (3.2.29) 

where c~ = 0 if the sum is restricted to even values of a, a = 1 if the sum is 
restricted to odd values. 

Proof. We regard z as a complex variable and use Liouville's theo- 
rem, rather as we did in Theorem 2.6.10. First we verify from (2.6.21) and 
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(1.5.6) that  

lira q~a(Z)= Q(q) 
z - - ~ -  1 (3.2.30) 

lira d~ a(q-aZ) = (-- 1)a-lq-(l/2)a(a-1)O(q) 
z--->--  1 

Then  we consider (3.2.29) when z = - q b / 2 ,  where b is an integer of the 
same pari ty  as a and  a. If 1 < Ibl < r, then all terms in the sum on the 
lef t -hand side vanish except  the one with a = ]b]. Using (3.2.30) and  
(2.6.28), we can verify that  (3.2.29) is satisfied. If b = 0 or r (and has the 
same par i ty  as a and  a), then all terms on the lef t -hand side and  r ight-hand 
side vanish, so (3.2.29) is trivially satisfied. 

N o w  let 

f ( z )  = ( lef t -hand side - r ight -hand side) of (3.2.29) (3.2.31) 

This funct ion is analytic in the domain  0 < Izl < oo, and  by using (2.6.28) 
we can verify that  

f(qrz) = z2-rq-(l/2)r(r--If(z) (3.2.32) 

(This quasiperiodici ty relation is satisfied by each te rm in the a summa-  
tion.) F r o m  the above  remarks  it follows that  

f ( _  qb/2) = 0 (3.2.33) 

for all integers b of the same par i ty  as a and  a. This means  that  the 
funct ion 

g(z)  = f ( z ) /  E(  - q-'~/2z, q) (3.2.34) 

is also analyt ic  in 0 < [z[ < o0 [the denomina to r  has only simple zeros, at 
which f ( z )  vanishes]. 

Finally, consider  the funct ion 

G(z) = z'~/2g(z)E( - q'~/2z, qr)E( - q-'~/zz, qr) (3.2.35) 

[which is propor t iona l  to f ( z )  divided by the a = a term of the sum in 
(3.2.29)]. This is analyt ic  in 0 < [z] < oo and  is periodic: 

G(q~z) = G(z) (3.2.36) 

It  is therefore b o u n d e d  in qr < ]Z[ < 1, and  hence in 0 < [z[ < or This 
means  that  it mus t  be  analyt ic  at z = 0 and  or so by  Liouville 's theorem it 
mus t  be  a constant .  It  vanishes when z = -q,~/2,  so the constant  must  be 
zero. Hence  G(z), g(z), and  f ( z )  vanish identically, which proves  the 
theorem. [] 

The  required identi ty (3.2.27) can now be established by Lauren t  
expanding  both  sides of (3.2.29) in powers  of z and  equat ing coefficients, 
using (2.6.22), (2.6.44), and  (1.5.7). 

There  is an al ternative way to establish (3.2.28). No te  that  ~ enters 
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(3.1.4b) only because of the result (2.6.53) of Theorem 2.6.9. If we go back 
to the original functions "~m and, using (2.6.52) to x,,, we see that (3.1.2) is 
equivalent to 

M =  lira Mm(b,c ) (3.2.37) 
m---) ~ 

where, for 1 < b < c < r a n d c = b +  1, 

M m ( b , c )  = 2 *  x ( a + j ) ( a - j - r ) / 4 g ( x a ,  x r ) x m ( a , b , c )  (3.2.38) 
l < a < r  

the integer j being defined by (2.6.51); the summation is over integers a 
with the same parity as j .  

In Section 2.6 we evaluated the large-m limit of Xm(a,b,c ). The 
derivation was very complicated, involving (in Appendix B) the theory of 
very well-poised q-hypergeometric series. By contrast, the large-m limit of 
Mm(b , c) can be obtained quite simply and directly: the key is the following 
theorem. 

T h e o r e m  3.2.3. Let Mn(b,c ) be defined by (3.2.38), (2.6.51) and 
(2.6.4)-(2.6.5), with q = x r-2. Define ~ (an integer or half an integer) by 

= (c - b)(�89 - b) (3.2.39) 

Then for Ixl < 1, 1 < b, c < r and c = b ___ 1, 

Mm(b,c)= ~ (-1)tx(l/2)r'2-(m+~)'(q~-';q) m (3.2.40) 
t ~ - -~  

where we are using the notation (2.2.8). 

Proof. From (2.6.4) and (2.6.33) we can verify that the summand in 
(3.2.38) is an even function of a, and that 

Mm(b,c)= ~,* E(x%xr)o(a)  (3.2.41) 
--r<~a<r 

where 

o(a) = x(a+j) (a- j - r ) /4q(m+a-b) /4 fm(a  , b, c) (3.2.42) 

and we have used the fact that a(0) = o ( -  r) = 0. 
We now proceed similarly to the first part of the proof of Theorem 

3.2.1. Incrementing a by 2r, and replacing X in (2.6.5) by X + 1, we find 
that 

o(a + 2r) = xZa+ro(a) (3.2.43) 

and hence, by recurrence, 

o(a + 2kr) = x 2 k a + r k ( 2 k -  1)o'(a) (3.2.44) 

for all integers k. 
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If we define 

J = ~-]* o(a)(1 - x a) (3.2.45) 
- - o o < a < ~  

then by proceeding as in (3.2.12) and (3.2.13) we obtain, using (1.5.7) and 
(3.2.41), 

oo 

J =  Z *  0(%) X [ x2~a~176 
--r<ao<r k=-oo 

= E *  o(a) ~ (--1) lx  la+(l/2)r`(1-1) 
-r<a<r l= -~o 

= •* o(a)E(xa, x r) 
--r<a<r 

= Mm(b,c ) (3.2.46) 

Thus J is equal to Mm(b, c). On the other hand, substituting (2.6.5) into 
(3.2.42) and (3.2.45), interchanging the a, 2t summations and setting 

a = - j  + 2(r - 2)2t + 2t (3.2.47) 

(t must be an integer), we obtain 

J = E (1 -- q2Ax2t-J)qX(2X+b-c)-(1/2)(b+l-c)t 
A = - - o o  t = - - o ~  

[ m l • xt('-J-O � 8 9  (3.2.48) 

the summand in (3.2.48) with the factor ( 1 -  q2Xx2t-J) Let F(X, t) be 
omitted. Then one can verify that 

F(X + �89 t + 1) = q2Xx2t-JF(X, t) (3.2.49) 

so (3.2.48) can be written as 

J =  (3.2.50) 
A.=--oc~ t = - - o 0  

The two terms in (3.2.50) can be grouped together by replacing (A, t) by 
(�89 in the first, and by (�89 - �89 - 1) in the second. Then/~ is even for 
the first term, odd for the second: combining them we get 

J =  ~ ~ ( - l ) " F ( ~ / x , t )  (3.2.51) 
/L=--OO t = - - 0 0  

the sums being over all integers/~, t. 
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Next  we interchange the/~, t summat ions  (such interchanges are justi- 
fied by the rapid  convergence of the series due to the quadrat ic  exponents  
in the summand) ,  and  set 

t~ = t + (b - c)k (3.2.52) 

(Since Ib - c I = 1, k is an integer.) Then,  after substituting the explicit fo rm 
of the summand ,  (3.2.51) becomes  

t= -oo k=0 k 

where we have used (2.2.4), and  the fact  tha t  [b - c I = 1. The  k summat ion  
can be restricted to 0 < k < m because of (2.2.1). 

The  k summat ion  can now be pe r fo rmed  by using the identity 

k = 0  

(Theorem 3.3, p. 36 of Ref. 16). This gives 

j =  ~ (-1)'x(~/z)r'~'-l~-J'(q'+(b-c)';q) m (3.2.55) 
t = - - o o  

Replacing t by  (c - b)t, using (2.6.51) and  remember ing  that  J = M m (b, c), 
we obtain  the desired result (3.2.40). This completes  the proof  of Theo rem 
3.2.3. �9 

It  is instructive to explicitly expand  the produc t  in the s u m m a n d  of 
(3.2.40): 

(q ' - ' ;q)m = (1 -- q l - ' ) ( 1  -- q 2 - , ) . . .  (1 -- qm-t)  (3.2.56) 

We  see that  this vanishes if t = 1,2 . . . . .  m, so we can restrict the t 
summat ion  to the two regions t < 0 and t > m. Setting t = - s  in the first, 
t -- s + m + 1 in the second, and  using (2.2.11), we can  write (3.2.40) as 

mm(b,c ) ~ (__ 1)Sx(l/2)rs2+mS[X,f;s x--~s+[(1/2)r--~](m+I)nz s + l .  \ 

= - J ( q  ' q)m 
s = 0  

(3.2.57) 

I t  is now easy to take the limit m ~ oo. F r o m  (3.2.39), [~1 < �89 r, so as 
m ~  oo all terms in the summat ion  in (3.2.57) tend uniformly to zero, 
except  for the first pa r t  of the s ---- 0 term. Thus,  using (3.2.37), 

M =  lim Mm(b,c) = (q ;q )oo=  Q(q) (3.2.58) 
m - - >  oo " 

We have  thus rederived (3.2.28), without  using the working of Append ix  B 
and Section 2.6, and  without  introducing the funct ions W and ~] (which are 
mul t id imensional  theta series). 
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3.3. Final Results 

We can now write down explicit expressions for the local height 
probabilities. They are given by (3.t.1)-(3.1.4), and for regimes I, II, III, 
IV, we can write M as a simple product of theta functions by using (3.2.25), 
(3.2.28), (3.2.23), (3.2.24), respectively. We obtain 

I: P~ --- x (1/2)a(a+l-r) +(r2-2r+v)/SE(xa, - x r/2) 

E[ x(,-2)a, xr(~-2)] 
X (3.3.1a) 

( E ( -  x~/Z,x)E(x('-2)/2,x 2r-4) } 

II: P~ = E(x~,x~)~.(,/z)(a+j)/Q(q ) (3.3.1b) 

III and IV: 

p~ = x ( l/2)a(a - 1) + (1 /2)d(d+ l) E (X ~, y) 

X 
{ x - a d E [  -- x2l(r -a) + 2rdx4rl I -- XadE[ -- x2l(r+a) + 2rdx4r']} 

[ E ( - -  x ,  x 4 ) E ( x  d, y / x ) ]  

(3.3.1c) 
where v is defined by (3.2.26); y = x', l = r -  1 in regime III; while in 
regime IV y = - x r/2, 1 = r - 2. In all cases x lies in the interval (0, 1). 

The function ~ is defined by (2.6.21), (2.6.22), and (2.6.44), with 
q = x r-2. Set t ingj  = j o  + ( r -  2)k in (2.6.22), where jo and k are integers 
such that 0 < j0 < r - 3, we can perform the k summation by using the 
periodicity property (2.6.45). [This procedure parallels that in (3.2.9)- 
(3.2.14).] We obtain the identity 

r - -3  
C~a(Z) = 2 X(1/2)rj(j+l)-aJ~adZJE[ -- q( l /2)r(r- l )+rj-azr-2,  qr(r 2)] ( 3 . 3 . 2 )  

j=0 

where q = x ' -2 .  We can regard the ~a.j as being defined by this identity 
and the periodicity relation (2.6.45). 

We can readily use (1.5.6) or (1.5.7) to expand all these results in 
increasing powers of x, so these forms are convenient for examining the 
behavior when x is small, which is when the eight-vertex SOS model is 
completely disordered (regime I) or completely ordered (regime II, III, and 
IV): the local height probabilities Pa take their ground state values. 

Critical Behavior. The other extreme is when x ~  1. From (1.5.8) 
and (1.5.20), c is then large and p in (1.2.3)-(1.2.9) is numerically small. In 
the limit when x = 1 and p = 0 the eight-vertex weights a, b, c, d in (1.2.3) 
satisfy 

d = 0, [(a 2 + b 2 - c2)/(2ab)[ < 1 (3.3.3) 
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The model is then critical, (l~ so it is of particular interest to consider this 
case and to be able to develop perturbation expansions in powers of to. (24) 
This can be done by transforming to elliptic functions of conjugate modu- 
lus. [Examples of such transformations have already occurred in (A30) and 
(A51).] The results are conventionally expressed in terms of the standard 
theta functions, (17'18) defined for all complex numbers u, q, with Iq[ < 1, by 

Ol(U,q 2) -- 2lq[ i/4sinu [I (1 - 2q2ncos2u + q4~)(1 - q2~) (3.3.4a) 
n=l  

04(u'q 2) = r I  (1 -- 2q2n-lcos2u + q4n-2)(1  -- q2~) (3 .3 .4b)  
n= l  

02(u,q 2) = 0~( ~ + u, q2), 03(u,q 2) = 04( ~ +u,q z) (3.3.4c) 

In regimes I and IV we encounter 01 functions with q2 negative, which is 
why we take q2 rather than q to be the second argument. Note that 0~ 
remains real even when q2 is negative. Sometimes we shall find it conve- 
nient to remove the 21ql ~/4 factor and to work with the functions 

~ (u ,q  2) = �89 q2), i =  1,2 (3.3.5) 

When q = 0, these functions 01 and 02 reduce to sin u and cos u. 
The "conjugate modulus" identities that we shall need are [for all 

complex numbers u, c such that Re(e) > 0] 

Ol(u, e- ' )  = O(u, e)E(e --4~u/, e -4~2/' ) (3.3.6a) 

O4(u,e -~) = p ( u , e ) E ( -  e-4"u/',e -4=V') (3.3.6b) 

Ol(�89 , - - e  - ' / 4 )  = 21/2O(u,,)E(e-4~u/',--e -4qrz/r ) (3.3.6c) 

where 

O(u,e)=(2~r/c)'/2exp[(2~ru - 2u 2 -  �89 I (3.3.6d) 

These are Eqs. (14.2.42) and (14.6.1) of Ref. 10, after allowing for differ- 
ences of notation. Note that if e is large then the second argument of the 
function E is numerically close to 1, which is what happens near criticality 
in our results (3.3.1). The product or series expansions (1.5.6) and (1.5.7) 
then converge very slowly. On the other hand, the second argument of the 
functions 01 and 04 is then small, so the product expansions (3.3.4) converge 
rapidly. This is why it is desirable near criticality to use the transformation 
(3.3.6). 

First apply the transformation to the definition (3.3.2) of the function 
~aj that occurs in regime II. The parameters x, p, and e are then related by 
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(1.5.8). Using (2.6.21) and setting 

E rE 
2t~e = [ ( r  - 2)/r] ' /2exp - ~ + 24(r - 2) 

(r - 2)rr 2 

6r~ 

z = e x p [ - 4 ~ ( r - 2 ) u / e ]  

t = p l / ( r - 2 )  = e-~/(r-2)  

Q( t)3 0,( rra / r, l) O4( ru, t r ) 

Fa(b!) = o( i r )204(u ,  t)04(u q- ~ra/r, t) 

the identity (3.3.2) transforms to 

r--3 [ 7 r ( r -  1) L ~ 2  ~rj ~ra 
F ~ ( u ) -  4(r 2) j'~J0~a'j04l u + 2(r 2) + - r - 2 r ( r  - 2) 

(r-  a)2,  
+ 2r2~ ~/a,j J 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

- -  , t 1/(r-2)] 

(3.3.11) 

true for all complex numbers u. This Fa(u ) is an entire function of u, 
periodic of period ~r. 

From (2.6.45) and (3.3.7) 

~ka,j+r_ 2 ~- ~ka, j (3.3.12) 

We can regard the )'a# as defined by (3.3.8)-(3.3.12). We can make this 
more explicit by introducing the Fourier coefficients fa,n of F~(u): 

Fa(u) = ~ Ja,r ne2inu (3.3.13) 

which satisfy the quasiperiodicity relation 

fa,,+r- 2 = - t n+(1 /2 ) ( r -  2)e--2~ia/rfda,n (3.3.14) 

Using the series expansion of 04(u ) (Eq. 8.192.1 of Ref. 17), we find that the 
)ta, j are given by 

4 r-3E exp [-2~rin(j+�89 ,a,, (3.3.15) 
~ka'J "~" ~ n=0 / 

for all integers a, j .  
Now we apply the transformations (3.3.6) to our results (3.3.1), using 

the relations (1.5.8) (between x, e, and p) in regimes II and III, and the 
relations (1.5.20) in regimes I and IV. It is convenient to define 

S =pl/(ar--r) t=  ]pl 1/(~-2) (3.3.16) 

R~ = r/Ol(~ra/r, p) (3.3.17) 
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[This is consistent with (3.3.9).] After a fair bit of cumbersome manipula- 
tion we obtain, for the four regimes I-IV, 

20, (Tra/r,/ ,2) 
I: P~=  

R~O4(rrv / 2 ,  p2r)o2(o, - t ~) 

II: P~ = ~.a,(1/2)(a+j)Ol(era/r, p ) /  Q ( t  r) 

III: P~ = 

(3.3.18a) 

(3.3.18b) 

03Qra /2r  - ~rd/ (2r  - 2),s) - 03(~ra/2r + vrd / (2r  - 2),s) 

IV: ea= 

Ra04(O , ]Tr)Ol(qTd/(r  -- 1), S 4r) 

(3.3.18c) 
03(rra /2r  - ~rd/(2r  - 4), t ' /2) - 03(~ra/2r + ~rd/(2r  - 4), t ' /2) 

Ra04(O , p2r)Ol(~rd/ (r  - 2), - t r) 

(3.3.1Sd) 

As before, u is defined by (3.2.26), Q ( q )  by (2.2.7). The integers j and d 
determine the phase of the system in the ordered regimes. They must satisfy 
(3.1.6) and are defined in terms of the boundary conditions by (2.651), 
(2.3.18)-(2.3.20), and (2.5.10), for regimes II, III, IV, respectively. [Thus 
d = �89 + c - 1) in regime III.] 

These results are expressed in terms of the original parameter p that 
entered (1.2.3)-(1.2.9), which is negative for regimes I and IV, positive for 
II and III. For fixed values of w o / K ,  v / K ,  and r t / K  [from (1.4.1), 
~ / K - -  r-1], the SOS model weights W are real functions of p, analytic for 
Ipl < 1. At p = 0 we are on the interface between regimes I and II (for 
T/< v < 3vl), or between III and IV (for - ~ / <  v < ~/). The model is then 
critical, so we can naturally regard p as a "deviation from criticality" 
variable. 

At p = 0 we find from (3.3.18) that for all regimes 

Pa = p(c) = 4 r -  lsin~(~ra/r) (3.3.19) 

The (c) denoting the critical value of Pa- Note that this result is indepen- 
dent o f j  and d, i.e., is independent of boundary conditions and is the same 
for all phases. This is what we expect to happen at criticality: long-range 
order has disappeared. 

We can expand the P~ in increasing powers of p (or s, or t). For regime 
II we first need to note from (3.3.10) and (3.3.13) that 

fa,, = tn /2ei"~/rs in  (n  + 1)~ra [ 1 + 0(t2)}, 0 < n < r - 2 (3.3.20) 
r t 

fa,n = s in(~ra/r )  + t2s in(3~ra/r)  + ' ' '  (3.3.21) 
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We then find that 

I: e a =  P~(C){1- (--/9)2/(r--2)[1 -I- 2cos(2~ra/r)] + O[p, p6/(r-2)]} 

(3.3.22a) 

II: P~ = P~(C)( 1 + 4p(1/2)(r-3)/(r-2)2COS rear cos ~r(Jr_2 + 1) 

3ff O[ p, ]9 (r-4)/(r-2)2] } (3.3.22b) 

III: P a =  P~(C)( 1 +4p3/(Sr-8)c~176 ~_l+rrd O[p, pl/(r-l)]} 
(3.3.22c) 

IV: e .  = e~c) 1 + 4(--p)3/(4r-8)COS ~-  COS ~ + O[fl, p2/(r-2)] 

(3.3.22d) 

[The terms of orderp (r-4)/(r-2)2 in (3.3.22b) occur only for r >/6.] 
For the ordered regimes II, III, IV, the leading deviations from 

criticality are proportional to the differences between the Pa for different 
phases, and hence to the long-range-order parameter. Their exponents are 
therefore the critical exponent fl,(l~ so 

r - 3 3 3 (3.3.23) 
/~-- 2 ( r - 2 )  2 ' 8 ( r -  1) ' 4 ( r - 2 )  

for regimes II, III, IV, respectively. 
The probabilities Pa are in general local properties of the lattice: they 

depend on the site to which the height l 1 in (1.5.1) refers. For definiteness 
we have up to now taken this to be the center site, but it could be any site 
deep within the lattice. 

In regime I the Pa depend only on whether the site lies on the X or the 
Y sublattice. (We can think of these sublattices as the centers of the black 
and white faces of a checkerboard.) For a given phase, the same is true in 
regimes III and IV. For regime II, there are r - 2 different functions Pa, 
depending on the position of the site, corresponding to the r -  2 distinct 
(modulo 2 r -  4) equal-parity values of j that are allowed in (3.3.1b) and 
(3.3.18b). Thus in regime II we can define an average function P~ obtained 
by averaging over these values o f j .  From (3.3.18b), (3.3.15), and (3.3.21), 
this is given by 

ff a = 4r-lfa,offl(~a/r, p ) /  O(tr) 

= P~(C) { l + p2/(r- 2)[ l + 2 cos(2~ra / r) J + - - - } (3.3.24) 
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In regime I, the corresponding average fia is equal to Pa. For both 
regimes, fia is a nonlocal property of the model, independent of boundary 
conditions and phase. (For the hard hexagon model Pa corresponds to the 
mean density.) From (3.3.22a) and (3.3.24) we see that for regimes I and II, 

fia = P~C){1 + sgn(p)lp[l-~[1 + 2 c o s ( 2 v a / r ) ]  + . . .  } (3.3.25a) 

where the critical exponent R is given by 

1 - g~ = 2 / ( r  - 2) (3.3.25b) 

Free Energy.  To complete the discussion of the critical behavior, we 
should consider the free energy of the SOS model, with heights restricted by 
(1.4.3). This can be obtained by the "inversion relation" method, (21) using 
(AI 1), (A12), and (A13). It is the same as the free energy of the unrestricted 
model, and of the original eight-vertex model with weights given by (1.2.3), 
except that in regime II the free energy is that of the "SDP-like" eight- 
vertex model. (2~) 

Let p ' , B , v , K , p  be the parameters entering the definitions (1.2.3)- 
(1.2.9) of the Boltzmann weights of the model, and h(u )  the function 
defined by (1.2.4) and (1.2.7). In regimes II and III define 

P0 -- p'h(2~)exp[--qT(D 2 - -  T ~ 2 ) / ( 2 K K ' ) ]  

r = 2 7 r K / K ' ,  X = 2 7 r ~ / K '  (3.3.26) 

u = rr(n + v ) / K ' ,  q = e -~ 

Then we can verify that the definition (1.2.3) of the eight-vertex model 
weights a, b, c,d is equivalent to that of Eqs. (6.1)-(6.5) and (6.11) of Ref. 
21 (apart from negating and permuting some of w t . . . . .  w 4 therein: such 
transformations leave the partition function unchanged(2)). It follows that 
K, the partition function per site, is given by Eqs. (6.30) and (6.32) of Ref. 
21. Using (1.5.4), we see that - ~/< v < v/, 0 < u < X in regime III, so Eq. 
(6.32a) is applicable; in regime II, 7/< v < x - ~/, X < u < �89 r, so (6.32b) 
applies. 

For regime III we can use the original eight-vertex model results32) 
The q,~r/I ,  of Eq. (El0) of Ref. 2 correspond to p l / 2 , K / ~  herein, so we 
find that the dominant critical singularity in n is 

III: Ksing = p x/(2~) (3.3.27) 

This is multiplied by a factor that in general is a nonzero analytic function 
of p at p = 0. Exceptions occur when r = K / ~  is an integer, which from 
(1.4.1) is precisely the case we are considering. If r is even (3.3.27) should 
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be multiplied by a factor In p; if r is odd the singular part of K disappears 
altogether, as has been observed for the hard hexagon model. (8'1~ 

For regime II, a similar calculation to that of Appendix E of Ref. 2 
yields 

II: Ksing = p K/(K--2"q) (3.3.28) 

and IV the parameter p is negative. Define L ' / K  by In regimes I 
(A50), i.e., 

and define 

p = - e- 'L'//r  (3.3.29) 

Oo = P'h(2~)exp[-Tr(  v 2 -  r12) /2KL ']  

q2 = _ e-~K/L' ,  X = ~r~/L '  (3.3.30) 

u = ~r(~ + v ) / 2 L '  

These definitions ensure that (1.2.3) is equivalent to Eqs. (6.1)-(6.5) of Ref. 
21. It is now Eqs. (6.9a) and (6.9b) that are appropriate, the former 
applying in regime IV ( - ~  < v < ~), the latter in regime I, (~/< v < K -  
~). From them we find that the singular part of ~ is 

IV: ~:sing = ( _ p ) x / a n  (3.3.31) 

I" /r = (_p)/(/(K-2n) (3.3.32) 

These free energy results (3.3.26)-(3.3.32) apply for all values of ~ in 
the interval (0,K/2).  Setting r = K/~I  as in (1.4.1), we see that 

Ksing ~---l/O[ 2-~ (3.3.33) 

where 

2 - a = r / ( r  - 2), in regimes I and II 

= r / 2 ,  in regimes III and IV (3.3.34) 

For the hard hexagon case, when r = 5, these values of c~ agree with those 
previously obtained (Eq. 14.6.10 of Ref. 10), with the proviso, noted after 
(3.3.27), that ~ then has no singular part in regime III. 

We note also that in regimes I and II the free energy exponent a is the 
same as the average height probability exponent ~ given by (3.3.25). In 
general it is not obvious why this should be so, since differentiating the 
logarithm of the partition function with respect to p gives not only terms 
proportional to fia, but also terms proportional to the correlation of four 
heights round a face of the lattice. (For the hard hexagon case, with r = 5 
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and v = 3 7, such multiple-height correlations do not occur, so then we must 
have ~ = m) 

4.  S U M M A R Y  

We have considered the SOS model with weights given by (1.2.6), or 
equivalently (1.2.12b), which is known (~1'12~ to have the same partition 
function as the eight-vertex model. We have shown that the hard hexagon 
model is equivalent to a special case of this SOS model, in which ~ = K/5 
and each height l i is restricted to the range 1 < l i < 4. 

One intriguing feature of the hard hexagon model is that the Rogers- 
Ramanujan (39'4~ identities, and many related identities, occur naturally in 
the calculation of the sublattice densities. (9'2~ In the SOS model these 
densities correspond to the probability that the height at a particular site 
has a given value. We have therefore considered a more general SOS 
model, in which ~ = K/r (r an integer), each height being restricted to the 
range 1 < li < r -  1. Sure enough, when we calculate the local height 
probabilities we are led to generalizations of the Rogers-Ramanujan identi- 
ties. 

There are two main sorts of such identities. In Section 2 we evaluate 
the ( m -  1)-fold sums (1.5.11) and (1.5.23), and show that in the limit 
m ~ ~v they are modular forms. (In regimes I, III, and IV they are sums of 
at most two simple quotients of elliptic theta functions.) These identities are 
generalizations of the Rogers-Ramanujan identities, as well as of some 
similar identities listed by Slater. (31) They are presumably related to Gor- 
don's generalization. (~5'~6) 

The other sort of identity occurs in Section 3, where we calculate the 
normalization factors M occurring in the definition of the local height 
probabilities Pa- [These factors are proportional to (1.5.13) or (1.5.25), and 
ensure that the necessary condition (1.5.2) is satisfied.[ For regimes I, III, 
and IV these identities involve sums of products of theta functions of 
different nomes. They are generalizations of some of the 40 such identities 
listed by Ramanujan, (34) and are derivable from Theorem 3.2.1. 

Regime II is much more difficult than the other regimes. Its solution 
(in the limit m ~  ~ )  involves the theory of very well-poised q -  hy- 
pergeometric series (see Appendix B), and introduces the multi-dimensional 
theta series ~a:i and ~ j .  (Curiously, the normalization factor M can be 
evaluated without these complications, as is shown in Theorem 3.2.3.) 

In Section 3.3. we present our final results for the Pa, put them into a 
form suitable for examining critical behavior, and obtain some of the 
critical exponents fl, a, ~ of the restricted SOS model. 
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For definiteness, we have focused our attention on the case ~ -- K/r  (r 
an integer), which is the obvious immediate generalization of the hard 
hexagon case ~ -- K/5. However, the working can be further generalized to 
the case ~ -- sK/r (r and s integers, 1 < s < r), as is being done by one of 
us (PJF). 

APPENDIX A: CORNER TRANSFER MATRICES 

Let A, B, C, D be the corner transfer matrices (CTMs) corresponding 
to the lower-right, upper-right, upper-left, and lower-left quadrants of the 
lattice, as on p. 366 of Ref. 10. Each will break up into r -  1 diagonal 
blocks, one for each value of the center spin l 1 . Let S a be the corresponding 
diagonal matrix whose diagonal entries are unity for the block with l I = a, 
all other elements being zero. Then (1.5.1) is equivalent to 

Pa = Trace SaA BCD/Trace A BCD (A 1) 

The matrices A, B, C, D are products of local "face transfer matrices" 
Uj and Vj. that merely add one face at a time to the lattice [Eq. (13.2.4) of 
Ref. 10, Eq. (9) of Ref. 23]. These matrices have elements 

m 
= I-[ 8(lk,t ) ( m )  

k=l  
~j 
m 

(Vj)ll  ' =  m ( / j - 1 , / j l / j ' , / j + , )  H ~(lk'lk) (A3) 
k~ l  
~j 

Here ! denotes the set of heights { l l ,/2, . . . , l m), 1' denotes { l{, l~ . . . .  , l,~ }, 
and j = 2, 3 . . . .  , m + 1. The heights Ii, l 2 . . . .  correspond to those an 
observer would see if he started at the center of the lattice and walked 
outwards along the edges. Thus they (and l{,l~,... ) must satisfy the 
adjacency condition (1.2.2), i.e., 

[ / j + l -  ~] = I / j + l -  /Jf[ : 1, j >/ 1 (An) 

The boundary heights of the lattice are to be fixed at their ground state 
values (there may  be more than one ground state, in which case we have to 
select a particular one). The heights lm+l,lm+l,lm+ 2 that occur in the 
definitions of U m, Vm, Um+ l, Vm+ I are to be given these boundary values, 
which will in general mean that these boundary face transfer matrices 
depend on the face to which they refer. 

Special Properties of the Uj, Vj. From (1.2.12), all the matrices 
Uj, Vj,A,B, C,D are functions of v, so we can for instance write Uj as 
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Uj(v). When v = ~, we see from (1.2.12) that, for l, m, n, p satisfying (1.2.2), 

W(/, m In, p) = o'h(271)8(l, p) (15) 

By substituting this result into (A2), it follows that 

Uj(*I) = p'h(2*l)I (A6) 

where I is the identity matrix. 
Similarly, when v = - ~ / w e  find from (1.2.12) that 

[ h(w,)h(we) 1'/2 
W(1,mln, p)=o'h(2,1) h(wm)h(w,) 8(m,n) (17) 

Using (A3), it follows that 

v j ( -  7) = teh(2n)Rj_ 1Rj+ ]Rj -2 (A8) 

where Rj is the diagonal matrix with entries 

(Rj )l,,= [ h(wtj) ] 1/2 f i  8( l~ ,l~ ) (A9) 
k = l  

For general values of v, the matrices Uj and Vj are very sparse, 
breaking up into one-by-one and two-by-two blocks. They can therefore 
easily be inverted. Defining 

~(v) = [p'2h(Zn + v)h(27/ -  v)]--I (AI0) 

we find that the inverse of Uj is also given by (A2), but with W multiplied 
by ~(v - 7/) and v in (1.2.12) replaced by 2~ - v. Thus 

Uj- '(v) = ~(v - ~))Uj(2~) - v) (Al l )  

Similarly, the inverse of Vj is given by (A3), but with W(l, m ln, p) 
multiplied by ~(v + ~)h(wm)h(w.)/[h(wt)h(wp)], and v replaced by - 2 ~  - 
v. It follows that 

Yj-1(I.))  = ~ ( v  + ' r l ) R j : 2 1 R j 2 b (  --  2T  I --  I ) ) R j 2 R j +  2 (A12) 

These inversion relations (All) ,  (A12) are consistent with (A6) and 
(A8), being satisfied by them when v = 7/, - ~, respectively. 

Actually, we shall use neither (A1 l) nor (A12), but a simple corollary 
of (A12) that follows from (1.4.1) and the fact that W is negated if v is 
increased by 2K: 

y j - l ( t ~ )  = --~(t~ -I- T I ) R j : 2 1 R j 2 V j [ ( 2 r  --  2)~) - I ) ] R j 2 R j ;  2 (AI3) 

Properties of A, B, C, D. The matrix A, i.e., A (v), is defined as 

A(v) = FzF 3 . . .  Fm+ l (A14a) 
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where 

Fj = u~J)+~ u~J )u , , _ t  . . .  Uj (A14b) 

the superscripts (j) on Urn+ 1 and U,, denoting the fact that these matrices 
(but not U 2 , . . . ,  U,,_ 1) depend on the boundary heights and hence on the 
value o f j  in (A14b). 

The matrices B, C, D are defined similarly, but with each Uj replaced 
by V/, Uj r, Vj r, respectively. In fact U/and Vj are symmetric matrices, but it 
does not necessarily follow that C = A or D = B, since the boundary 
heights for C (D) may differ from those of A (B). 

The ground states [i.e., the values of the heights of all lattice sites that 
maximize the summand in (1.2.1)], do themselves depend upon v, but only 
in the sense that they have fixed values in one domain of the complex v 
plane, then change discontinuously to other fixed values as v crosses from 
this domain to another. We find that we have two domains to consider: 

2 l :  - 1  < R e ( v / ~ l ) <  I 
(A15) 

2 z :  1 < Re(v/7/) < r -  1 

We can allow v to reach, or even briefly cross, the domain boundaries, so 
long as we interpret our results as the appropriate analytic continuations of 
the intradomain values. 

In both cases we can therefore let v = 71. From (A6) and (1.14) it 
follows that (to within irrelevant scalar factors) 

A01 ) = C07 ) = I (A16) 

This result is consistent with the fact that the ground states are unchanged 
by uniform shifts in the SW-NE direction [i.e., the height on site (x, y) is 
the same as that on site (x + 1, y + 1)]. Since Uj, Vj are symmetric, it 
follows that 

A r(v) = A (v ) ,  C T ( v )  = C ( v )  
(117) 

DT( ) = S(v) 

In the domain ~1 ,  we can also let v = - 7/. Substituting the form (A8) 
of Vj(-rt)  into the appropriate analogs of (A14), we find that R~, R 3 . . .  
all cancel out, leaving (to within irrelevant scalar factors) 

B ( -  ~/) = D ( - ~ / ) =  R, (A18) 

Thus in domain 21  

A (r l )B(  - ~ ) C ( ~ q ) n (  - rl) = R ?  (A19) 

In the domain ~@2 we can allow v to be close to the value (r - 1)~/(this 
is a "virtual inversion point"(2[)), and use (A13). Together with (A14) and 
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the symmetry property of the ground states, this implies that 

[ B (v) ] - ] =  R 1- 2D[ (2r - 2),1 - v I (A20) 

[There is a problem in deriving this, in that (A13) is not necessarily satisfied 
for j = m + 1. However, it seems that we can ignore this boundary diffi- 
culty in the limit of m large.] 

The matrix R1, like S t . . . . .  St_l, commutes with all the corner 
transfer matrices, so in domain -~2 we have the relation 

A ( v l ) B ( v ) C ( ~ ) D [ ( 2 r -  2 ) ~ -  v] = R? (A21) 

provided v is sufficiently close to (r - 1)7. 

A , B , C , D  as  Exponentials  in v. The star-triangle relation (1.33), 
(1.34) implies (1~ that in the limit of m large the corner transfer matrices 
have the form (to within irrelevant scalar factors) 

A (v)  = Q l M l e V ~ Q f  z 

B ( v )  = Q2M2e-V~Q31  
(A22) 

C ( v ) = Q3M3eV;/e'Q4 t 

D ( v )  = Q4M4 e - v ~ Q l - 1  

where ~U, Q1, �9 �9 �9 Q4, Ml, �9 �9 . , M4 are matrices that are independent of 
v and commute with R 1 , S 1 . . . . .  St_ 1, and ;:ego M1 ' . . . ,  M4 are diagonal. 
Substituting these forms into (A1), we obtain 

P, = T r a c e S a M 1 M 2 M 3 M n / T r a c e M 1 M 2 M 3 M  4 (A23) 

Thus we need to calculate the product M I M 2 M 3 M  4. First substitute 
the forms (A22) into (A19) or (A21) depending on whether v is in domain 
~1 or ~2 .  We obtain 

M]M2M3M4 e2`€ R? (A24) 

where 

t = 2,2 - r, in domains ~-~1 , ~ 2  (A25) 

respectively. Thus (A23) becomes 

Pa = Trace S~ R ~e- 2tn~/Trace R ~e- 2m~ (A26) 

This simplifies the problem to the calculation of S .  However, setting 
v = ~/in the first of the equations (A22) and us!ng (A16), we find that 

QIM1 = Q2e - ~ S  (A27) 
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and hence 

A (v) = Q2e(V-n)~Qf ' (A28) 

Thus exp[(v - ~ / ) ~ ]  is simply the diagonal form of the single corner 
transfer matrix A (v). We can calculate this by using certain quasiperiodic 
properties of A (v) (corresponding to incrementing v by iK', or 2iK'): these 
imply that the elements of ~'~ are integer multiples of ~r/K', and we can 
calculate these integers from special limiting cases. 

To do this, we have to distinguish whether the home p in the definition 
(1.2.7) of the elliptic function h(u) is positive or negative. Together with the 
division (A15) of the complex v plane, this gives us four cases to consider. 
If we restrict v to be real and less than 377 (which ensures that the 
Boltzmann weights can be chosen to be real and nonnegative), then these 
four cases are the four "regimes" in (1.5.4). However, here we shall still find 
it convenient to regard v as a complex variable, and extend the allowed 
values of v to 

v ~ ~ 2 ,  in regimes I and II 
(A29) 

E 5~ 1 , in regimes III and IV 

From (A25), we see that the values of t in the four regimes are given 
by (1.5.5). 

R e g i m e s  II and III. When 0 < p < 1 (regimes II and III), we can 
make a conjugate modulus transformation (1~ so as to write the definition 
(1.2.7) of the function h(u) as 

h ( u ) =  ~-exp[-Tr(u - K)2/(2KK')]E(e-2~u/X',y) (A30) 

where 

y = exp( - 4r (a31)  

K ~-r 1 - Y  n/2 
(A32) " r = ~ 7  11 1 

n = l  %. y n / 2  

and the function E(z, y) is defined by (1.5.6). Note thaty ,  likep, lies in the 
interval (0, 1), but is close to one when p is small, and vice-versa. 

Using the form (A30) for h(u), and defining 

X = e - 4 ~ / K '  (A33) , W ~ e - 2 ~ r ( ~ l - v ) / K '  

gt = exp[~r(v - ~/)(w,-  K)2/8~KK ' ] (A34) 

u = p"rE(x, y)exp[  ~z(4K~ - K 2 - v 2 - 3~2)/2KK '] (A35) 

/~l = exp( - 2~zw,/K'), E t = E( I~l, Y) (A36) 
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(1.2.5) but not (1.4.1) nor (1.4.2), we can write (1.2.12b) as then, using 

= g , + , ) l  

= 

= v( g,+ ,/g,)2E( I~lw)/E(iz,) 

= 

Yl 

where here we have written E(z, y) simply as E(z). 

(A37) 

[These reduce to the hard hexagon weights in the case ~ / - - K / 5 ,  
provided that here we replace v, gt by unity, and take r in Eq. (28b) of Ref. 
8 to be wl/2.] Now using (1.4.1) and (1.4.2), we can verify that the x defined 
by (A33) is the same as that defined by (1.5.8), and that 

y --- x r, /z t = x l (A38) 

When calculating A, we can ignore the parameter v in (A37), since it 
merely contributes an irrelevant scalar factor. The terms involving gl have 
the effect of multiplying W(l,m'{ l',m) by gtgm/grgm' and this in turn 
simply divides A n, by gll" The remaining terms in (A37) involve v only via 
integer or half-integer powers of w, so are periodic functions of v, of period 
2iK'. Within the appropriate domain 2 1 or -~2, defined in (A15), it 
appears that both A and its diagonal form are analytic functions of v, so 
from (A28) it follows that the elements of exp[(v - ~ / )H]  are 

[ e(~-")~]n'  = gt~- Lw N(I)/26 ( 1, i') (A39) 

where N(I) is an integer function of 1, and we use the notation 

3(1,1') ~ f i  3(1 k ,lf~) (A40) 
k = l  

Assuming (as seems perfectly reasonable) that H does not change 
discontinuously with p, the integers N(I) must be independent of p. We can 
therefore obtain them by studying the simple case when p and w are close 
to one, i.e., when ~I/K' and K / K '  are large, - 1 < Re(v/~/) < 3 and 

x << Ixl << x -1 (A41) 

It then follows from (A37) that 

I fi}/(Y, 3, )1 << 1 (A42) 

for l = 2 . . . . .  r - 2, which implies that the matrices Uj, and hence A, are 
near diagonal (in the sense that their off-diagonal elements give a negligible 
contribution to their eigenvalues). In the limit when x is small, we can take 
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/3 l to be zero: from (1.2.12a) and (A37) we then obtain 

W(l ,m ' ]  l ' ,m)  = u[ gtgm/(grgm.)lwrr-m'l/46tm (A43) 

The corner transfer matrix A is then diagonal, with entries 

All . =  f i  [ W ( / j + l , / j - + 2 l / j , / j + l ) ] J ~ ( I ,  l ') 
j = l  

= gt7 ~w~O~8( l, !') (A44) 

where ~(1) is defined by (1.5.12) and we have ignored some l-independent 
(i.e., scalar) factors in A. The boundary heights lm+l, lm+ 2 that occur here 
must be fixed at their values for the particular ground state under consider- 
ation. 

From (A28), exp[(v-  ~ ) ~ ]  is the diagonal form of A, so in this 
small-x limit it is given by (A44). From (A39) it follows that 

N(I) = 200) (A45) 

This is indeed an integer function; using the continuity argument men- 
tioned above, N(I) must be given by (A45) for all p in the interval (0, 1). 
From (A39), (A33), and (A34) (with T/-  e replaced by 2tr/), it follows that 

[ e -2t'q~u'] i r = x [ - t(2l l-r)2/16r+ t~'O)18 (1, !') (A46) 

Also, from (A9) and (A30), 

(R 2),,. = ~-x (2'' -r)2/8rE(x 6, y)6(l, 1') (a4v) 

Substituting these results into (A26), cancelling the scalar factor ~-, and 
remembering that 

( Sa ),,, = 6( l~ , a)6(I, 1') (A48) 

we obtain the result (l.5.9)-(1.5.14). 

Regimes I and IV. When - 1 < p < 0 (regimes I and IV), the elliptic 
integral K is real, but K' is complex, being of the form 

K ' =  L'  + iK (A49) 

where L' is real and positive, and 

p = - e -~r ' /K (A50) 

We can write (1.2.7) in the "conjugate modulus" form (1~ 

h(u)  = r  u ) / Z K L ' ] E ( e - ~ U / L ' , y )  (A51) 

where the function E(z ,  y )  is again defined by (1.5.6), and in these regimes 
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I and IV we define y and ~- by 

y = - exp( - 7rK/L') (A52) 

1 __fl2n 
Y =yl /4  K ~ (A53) 

n = l  

Since y is negative, the constant $ is complex. This is just a trivial 
complication due to the standard definitions of the elliptic theta functions. 
It is readily compensated by an appropriate definition of p' in (1.2.12b). In 
any case, �9 will cancel out of our final result for Pa. 

Substituting this form for h(u) into (1.2.12b), defining 

X = e -2~m/L' ,  W = e -'~(n-~)/L' (A54) 

g, -- exp[ ~(v - r l ) (w,-  K)2/g~KL'  1 (A55) 

p = p"fE(x, y)exp[  ~r(2Krq - 3~/a - v2) /2KL ' ] (156) 

/h = exp( - ~rwz/L'), E t = E( ~l, Y) (A57) 

we find that at,/3l are again given by (A37), while the expressions for ~'l, 3t 
now contain extra factors w 1/2, w-1/2, respectively. Thus 

Yt = u( g,+ 1/ g,) 2 w I/2E( t~,w)/ E(  tt,) 
(A58) 

8, = g,_ , /  g,)2w-1/ E( 

[For the case ~/= K/5 ,  the hard hexagon weights, Eq. (28a) of Ref. 8, can 
be obtained by replacing x, w, gt, p herein by x 2, w - 1, w - t/2, wl/2.] 

From (1.4.1) and (1.4.2), 

y = --  X r/2, ~l = Xl (A59) 

As in regimes II and III, we expect the elements of the diagonal form of A 
to be integer or half-integer powers of w, divided by gl,, i.e., we expect 
(A39) to be valid. To obtain these powers, we focus attention on the case 
when x is small and 

X I /2  << ]W[ << X - 1 / 2  (A60) 

Provided r =/= 2l, we find that (A42) is again satisfied, so in the limit of 
x small we can take/3 l = 0. Provided l '  and m' are not both equal to r/2, it 
follows that 

W ( l , m ' l l ' , m  ) = UW' /2 (g lgm/g l ,  gm,)W-H(l"Z'm')3lm (161) 

where the function H(l, l ' , / ' )  is defined by (1.5.26). 
For odd values of r, it follows immediately that A is diagonal in the 
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limit x ~ 0, with elements 

All, = gff 1W -+(I)8(1, |') (A62) 
where ~(1) is defined by (1.5.24) and we have ignored/-independent factors. 
As in regimes II and III, the boundary heights lm+ 1, l,~+2 are to be fixed at 
their ground state values. 

The argument is a little more complicated if r is even, since (A42) then 
fails for l = r / 2 .  This means that in the small-x limit most of the off- 
diagonal elements A., of A are zero, but nonzero elements occur when 

/jvs/j ' and l j _ l = l j + l = l j ' _ l = l f + l = r / 2  (163) 

It follows that A is block diagonal, with blocks that are direct products of 
one-by-one or two-by-two matrices. It can therefore readily be diagonal- 
ized: the eigenvectors are found to be independent of w [as (A28) implies], 
while the diagonal form is again given by (A62), (1.5.24), and (1.5.26). 

From (128), (A39), and (162), we see that in the small-x limit 

N(I) = -2~p(l) (164) 

This is indeed an integer function, so should be valid for all x in the 
interval 0 < x < 1, i.e., for all p in ( -  1,0). Replacing ~ - v by 2t~ in 
(A39), (A54), and (A55), it follows that 

[e-2t~w] n, = x [ -t(2h--r)2/Sr--t44')16(i, 1') (A65) 

while from (A9) and (151), 

( e ? ) l l  ' = "rX/1(2/1- r)/RrE(x II, ~)~( | ,  |g) (A66)  

Substituting these expressions into (A26), using (A48) and (A59), and 
canceling a factor ,cx -t~/8, we obtain the result (1.5.21)-(1.5.26). 

APPENDIX B: q -HYPERGEOMETRIC  SERIES 

The study of q-hypergeometric series has an extensive literature. (28'29'32) 
We shall consider just those developments necessary for the treatment of 
regime II. We shall use the notation (2.2.8) and its generalization 

(A, ,A 2 . . . . .  A r ;q) = ( A ) ) , ( A 2 )  n . . .  (A#) n (B1) 

The ordinary q-hypergeometrie series is defined by 

~ el . . . . .  Bs ) - j = o  (q, . . . . .  B, ;q)j 
(B2) 

This series terminates after finitely many terms if one of the ~i is a 
nonpositive integer power of q: this is the case we shall be considering. 
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The  series is said to be "well poised"  if s = n - 1 and  

fly_ laj = qa, j = 1 . . . . .  n (B3) 

where a = a I and  we take fi0 to be the fixed entry q in (B2). I t  is "very  well 
poised"  if it is also true that  

a2 , a 3 ,  /31, /32 = q al/2, - qal/2, al/2, - al /2 (B4) 

One can readily verify that  in this case the entries a2, a3, ill ,  132 in (B2) 
merely contr ibute  a combined  factor  

( q a ' / 2 ) g - q  a'/21 l -  aq2J 
( a l / 2 ) j ( -  a'/Z)j 1 - a (B5) 

to the summand .  
We  shall restrict our  at tent ion to such very well poised q-hyper-  

geometr ic  series, and  shall take n to be even, n /> 6, and  a n to be  the 
nonposi t ive integer power  of q. Then  we can write a 1 . . . .  , a n as 

al  , . . .  , a n = a,  qa 1/2, - q a t / 2 ,  bl  , c  I , b 2 , c  2 . . . . .  b k , C k  , q  - w  (B6) 

where 

n = 2k + 4, s = 2k  + 3 (B7) 

and  N is a nonnegat ive  integer. We  take t to be 

t = a k q ~ + N / ( b ,  . . .  bkC 1 . . .  Ck) (B8) 

The  series (B2) can then be writ ten as a (k - 1)-dimensional summa-  
tion (Theorem 4 of Ref. 29). At  first sight this m a y  not  appea r  to be 
progress, bu t  for k = 2 the identity yields Watson ' s  <33) proof  of the R o g e r s -  
R a m a n u j a n  identities. We  shall in fact find that  it enables us to handle  the 
tricky m -+ ~ limit for regime II. 

We do not  need the full theorem, but  can restrict our  at tent ion to the 
limit when 

c I . . . . .  c k -~ 0 (B9) 

(Since the series is a rat ional  funct ion of each c i, there is no difficulty in 
letting them become  zero.) Then  Theo rem 4 of Ref. 29 becomes  the 
following. 

Theorem B1. For  N , k  integers, N 1> O, k i> 1, 

N 
q ~l/2)kj<'-j)ajl-f-_5 q2jaa kfi2 (-?~7-s 

j=O i=1 I . : c l / u i ) j  

k (bi+l)M,q(1/2)(mi+Mi)(m, -M,+I )  
= q<'/2)N<N--')(aq)N ~ I-I (B10) 

{m} i= I ( - -  bi)Mi(q)m~(aq/bi)Mi 
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where 

b k + l  = q - N ,  bk+ 2 = a (B l l )  

M i =- m 1 + m 2 + �9 �9 �9 q- m i (B12) 

and the (m} summation is over all integer values of m l , . . . ,  m k such that 

m i >/ O, i = 1 . . . . .  k; m t -4- m 2 -4- �9 �9 �9 -4- m k = N (B13) 

R e m a r k s .  The left-hand side of (BI0) is the q-hypergeometric series 
(B2) with the substitutions (B3)-(B9). This theorem is precisely the same as 
Theorem 4 of Ref. 29 with c 1 . . . .  , c k set equal to zero: we have merely 
condensed the notation somewhat by using the definitions (B 11)-(B 13) and 
the properties (2.2.10), (2.2.11). 

Theorem B2. Let the function ON be defined by (2.6.6), and set 

dk+ 1 -= q / w ,  dk+ 2 = q (B14) 

Then for N, k integers, N /> 0, k/> 1: 

O u ( q , w , k  + 2;d, ,d  2 . . . .  , d~+2) 

k 
= (1 - w)  ~ 1"I q(1/2)m'(m'-O(-di )m'  (B15) 

( m )  i = l  ( q ) m , ( d i ) M , ( W d i ) N - M , _ ,  

where the M i are defined by (B12) (wht M 0 = 0) and the summation is over 
all integers m I . . . .  , m~ satisfying (B 13). 

Proo f .  This is merely a restatement of Theorem B1, in which we 
have set 

a = q - ' V w - ' ,  b i = a q / ~ ,  i = 1 . . . . .  k + 2 (B16) 

Doing this, using (2.2.10) and (2.2.11), and multiplying both sides of (B 10) 
by 

(1 - q N w ) / [ ( W d l ) N ( W d 2 ) w . . .  (wdk+2)ul (B17) 

we obtain the desired result (B15). It also follows that the function PN in 
(B 15) is proportional to the very well-poised series in (B 10). 

We shall be interested in the limit when N---> oc, while q , w , k ,  

d I . . . . .  d k remain fixed. We must exclude the cases when the function ON 
is infinite, so for the rest of this Appendix it is to be understood that, for all 
integers i and all integers n such that n/> 0, 

4 4= q-n,  wd/=/= q - "  (B18) 

We also restrict our attention to the case when 

[ql < 1 (B19) 
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Theorem B3. For k >~ 1, 

lira pN(q,w,k + 2 ;d  1 . . . . .  d k ,qw- l ,q )  
N---) oo 

k q(~/2)m,(..,-1)(_di)m, 
= (1 - w) E II  (e2o) 

(q)oo(4)o (w4)oo 

where now the { m) summation is over all integers m~ such that 

- o o  < m  i < G o ,  i =  1 . . . .  , k ;  rn l + m  2 +  . . .  + m  k = N  (B21) 

we are using the convention (2.6.20). 

Proof. The denominator in (B15) is uniformly bounded. The numer- 
ator is maximized when m i = k -  1N + O(1), i = 1 . . . . .  k. Let f be some 
number which is large compared with unity but much less than N / k ,  e.g., 
N / 2 k .  Split the (m) summation in Theorem B2 into two parts A and B, A 
having all m i greater than f, B containing all other values of m 1 . . . .  , m k. 
Then the power �89 ~ m i ( m  i - 1) of q ensures that for N large B is negligible 
compared with A. In part A the suffixes mi , M~ , N-M~_~  (for i =  
1 . . . . .  k) all tend to infinity with N, so the terms in the denominator of 
(B15) can all be replaced by their respective limits. The {m} summation 
can then be extended to include negative values of the mi, since the extra 
terms thus introduced are also negligible compared with A. 

Theorem B4. For k/> 1, 

Iim p N ( q , w , k  -a t- 2 ;d l ,  . . .  , d k ,qw- l ,q )  
N-->~  

is equal to the coefficient of z -  U in the Laurent expansion in powers of z of 

k e (4 / z , q )  
(1 - w) 17 (n22) 

i = 1  (q)oo(ai)oo(wai)oo 
where E(z, x) is the elliptic function given by (1.5.7). 

Proof. Substituting the series form (1.5.7) of the function E(z, x) into 
(B22) and collecting terms in the k-fold product that are proportional to 
z-N,  we obtain the right-hand side of (B20). 

Theorem B5. For s>/3 ,  one of d I . . . . .  d s equal to q / w  and an- 
other equal to q, 

lim ON(q,w,s;dl . . . . .  ds) 
N---> oo 

is equal to the coefficient of z -N in the Laurent expansion in powers of z of 

(q)3 E(w'q)  {-r E ( d J z ,  q) 
(B23) 

E(z ,q )E(zw,  q) i=111 (q)oo(di)oo(wdi)oo 
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Proof. Using the definition (2.6.6), both sides of (B23) are symmetric 
functions of d 1 . . . . .  ds, so it is sufficient to prove the relation for some 
particular ordering of d 1 . . . . .  d s. Choose 

ds-1 = q w - 1 ,  d s = q (B24) 

Substituting these values into (B23), setting s = k + 2 and noting from 
(1.5.6) that E ( q / z , q ) =  E(z ,q )  and 

E(w,  q) = (1 - w ) ( q ) ~ ( q w ) ~ ( q w - ' ) ~  (B25) 

NOTE ADDED IN PROOF 

Many of the identities of Secs. 2 and 3 were suggested a n d / o r  checked 
by partially expanding them in powers of the variable q or x, using 
a computer and (in Sec. 2) IBM's symbolic manipulation language 
"Scratchpad." For r odd, the identity (3.2.25) has been obtained by 
Bressoud (Eq. 5.3 of Ref. 41, with k = ( r - 1 ) / 2 ,  and a - x  n therein 
corrected to 1 + xn). 
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